메뉴 건너뛰기




Volumn 103, Issue , 2005, Pages 270-280

Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DISEASE SEVERITY; GLAUCOMA; HUMAN; INDEPENDENT COMPONENT ANALYSIS; LEARNING; OPTIC NERVE DISEASE; PRIORITY JOURNAL; VISUAL FIELD; VISUAL FIELD DEFECT;

EID: 29944445992     PISSN: 15456110     EISSN: 15456110     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (16)

References (15)
  • 1
    • 51249192700 scopus 로고
    • Über die Untersuchung des Gesichtsfeldes bei amblyopischen Affectionen
    • von Graefe A. Über die Untersuchung des Gesichtsfeldes bei amblyopischen Affectionen [Examination of the visual functions in amblyopic affections]. Graefes Arch Ophthalmol 1856;2:258-298.
    • (1856) Graefes Arch Ophthalmol , vol.2 , pp. 258-298
    • Von Graefe, A.1
  • 2
    • 0000393970 scopus 로고
    • Om en tilføjelse til den saedvanlige synsfeltun-undersügelse samt om synsfeltet ved glaukom
    • Bjerrum J. Om en tilføjelse til den saedvanlige synsfeltun-undersügelse samt om synsfeltet ved glaukom. Nord Ophthalmol Tidsskr 1889;2:141-185.
    • (1889) Nord Ophthalmol Tidsskr , vol.2 , pp. 141-185
    • Bjerrum, J.1
  • 3
    • 0028135264 scopus 로고
    • Interpretation of automated perimetry for glaucoma by neural network
    • Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 1994;35:3362-3373.
    • (1994) Invest Ophthalmol Vis Sci , vol.35 , pp. 3362-3373
    • Goldbaum, M.H.1    Sample, P.A.2    White, H.3
  • 4
    • 0036138639 scopus 로고    scopus 로고
    • Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
    • Goldbaum MH, Sample PA, Chan K, et al. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 2002;43:162-169.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 162-169
    • Goldbaum, M.H.1    Sample, P.A.2    Chan, K.3
  • 5
    • 0036325049 scopus 로고    scopus 로고
    • Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
    • erratum Invest Ophthalmol Vis Sci 2003;44:1813
    • Sample PA, Goldbaum MH, Chan K, et al. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 2002;43:2660-2665 [erratum Invest Ophthalmol Vis Sci 2003;44:1813].
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 2660-2665
    • Sample, P.A.1    Goldbaum, M.H.2    Chan, K.3
  • 6
    • 0037848978 scopus 로고    scopus 로고
    • Variational learning of clusters of undercomplete nonsymmetric independent components
    • Chan K, Lee T-W, Sejnowski TJ. Variational learning of clusters of undercomplete nonsymmetric independent components. J Machine Learn Res 2002;3:99-114.
    • (2002) J Machine Learn Res , vol.3 , pp. 99-114
    • Chan, K.1    Lee, T.-W.2    Sejnowski, T.J.3
  • 7
    • 0029866233 scopus 로고    scopus 로고
    • Neural networks to identify glaucoma with structural and functional measurements
    • Brigatti L, Hoffman BA, Caprioli J. Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol 1996;121:511-521.
    • (1996) Am J Ophthalmol , vol.121 , pp. 511-521
    • Brigatti, L.1    Hoffman, B.A.2    Caprioli, J.3
  • 8
    • 0036846761 scopus 로고    scopus 로고
    • Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
    • Bowd C, Chan K, Zangwill LM, et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci 2002;43:3444-3454.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 3444-3454
    • Bowd, C.1    Chan, K.2    Zangwill, L.M.3
  • 9
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation
    • Lee T-W, Lewicki MS, Sejnowski TJ. ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation. IEEE Trans PAMI 2000;22:1078-1089.
    • (2000) IEEE Trans PAMI , vol.22 , pp. 1078-1089
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 11
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • MacKay DJC. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems 1995;6:469-505.
    • (1995) Network: Computation in Neural Systems , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 12
    • 0024564782 scopus 로고
    • Assessing the utility of reliability indices for automated visual fields. Testing ocular hypertensives
    • Bickler-Bluth M, Trick GL, Kolker AE, et al. Assessing the utility of reliability indices for automated visual fields. Testing ocular hypertensives. Ophthalmology 1989;96:616-619.
    • (1989) Ophthalmology , vol.96 , pp. 616-619
    • Bickler-Bluth, M.1    Trick, G.L.2    Kolker, A.E.3
  • 13
    • 3242892323 scopus 로고    scopus 로고
    • Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
    • Sample PA, Chan K, Boden C, et al. Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 2004;45:2596-2605.
    • (2004) Invest Ophthalmol Vis Sci , vol.45 , pp. 2596-2605
    • Sample, P.A.1    Chan, K.2    Boden, C.3
  • 14
    • 0029973541 scopus 로고    scopus 로고
    • Spatial classification of glaucomatous visual field loss
    • Henson DB, Spenceley SE, Bull DR. Spatial classification of glaucomatous visual field loss. Br J Ophthalmol 1996;80:526-531.
    • (1996) Br J Ophthalmol , vol.80 , pp. 526-531
    • Henson, D.B.1    Spenceley, S.E.2    Bull, D.R.3
  • 15
    • 29944442558 scopus 로고    scopus 로고
    • Unsupervised machine learning with Independent Component Analysis to identify areas of progression in glaucomatous visual fields
    • Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with Independent Component Analysis to identify areas of progression in glaucomatous visual fields. Invest Opthalmol Vis Sci 2005;46:3684-3692.
    • (2005) Invest Opthalmol Vis Sci , vol.46 , pp. 3684-3692
    • Sample, P.A.1    Boden, C.2    Zhang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.