|
Volumn 43, Issue 1, 2002, Pages 162-169
|
Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
a a a a a a a a a a a |
Author keywords
[No Author keywords available]
|
Indexed keywords
ADULT;
AGED;
AREA UNDER THE CURVE;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
CLASSIFICATION;
COMPUTER ASSISTED PERIMETRY;
CONTROLLED STUDY;
DIAGNOSTIC ACCURACY;
GLAUCOMA;
HUMAN;
INTERMETHOD COMPARISON;
MAJOR CLINICAL STUDY;
MEDICAL EXPERT;
OPTIC NERVE;
PRIORITY JOURNAL;
RECEIVER OPERATING CHARACTERISTIC;
VISUAL FIELD;
DIAGNOSIS, COMPUTER-ASSISTED;
FALSE NEGATIVE REACTIONS;
GLAUCOMA;
HUMANS;
IMAGE PROCESSING, COMPUTER-ASSISTED;
MIDDLE AGED;
NEURAL NETWORKS (COMPUTER);
OPTIC NERVE;
PERIMETRY;
PHOTOGRAPHY;
PREDICTIVE VALUE OF TESTS;
ROC CURVE;
SENSITIVITY AND SPECIFICITY;
VISUAL FIELDS;
|
EID: 0036138639
PISSN: 01460404
EISSN: None
Source Type: Journal
DOI: None Document Type: Article |
Times cited : (110)
|
References (49)
|