메뉴 건너뛰기




Volumn 43, Issue 1, 2002, Pages 162-169

Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; AGED; AREA UNDER THE CURVE; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; COMPUTER ASSISTED PERIMETRY; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; GLAUCOMA; HUMAN; INTERMETHOD COMPARISON; MAJOR CLINICAL STUDY; MEDICAL EXPERT; OPTIC NERVE; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; VISUAL FIELD;

EID: 0036138639     PISSN: 01460404     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (110)

References (49)
  • 6
    • 0028245932 scopus 로고
    • Visual field interpretation with a personal computer based neural network
    • (1994) Eye , vol.8 , pp. 321-323
    • Mutlukan, E.1    Keating, K.2
  • 11
    • 0030061822 scopus 로고    scopus 로고
    • Prospective validation of artificial neural network trained to identify acute myocardial infarction
    • (1996) Lancet , vol.347 , pp. 12-15
    • Baxt, W.G.1    Skora, J.2
  • 36
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic output for support vector machines and comparisons to regularized likelihood methods
    • Smola A, Bartlett P, Schölkopf B, Schuurmans E, eds. Cambridge, MA: MIT Press
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 38
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • (1993) Clin Chem , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.