-
2
-
-
34648876684
-
-
Pan JG, Mak TW. Metabolic targeting as an anticancer strategy: Dawn of a new era? Sci STKE 2007;pe14:1-4.
-
Pan JG, Mak TW. Metabolic targeting as an anticancer strategy: Dawn of a new era? Sci STKE 2007;pe14:1-4.
-
-
-
-
4
-
-
33749478922
-
Cancer's molecular sweet tooth and the Warburg effect
-
Kim Jw, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006;66:8927-8930.
-
(2006)
Cancer Res
, vol.66
, pp. 8927-8930
-
-
Kim, J.1
Dang, C.V.2
-
5
-
-
33746930794
-
Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer
-
King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 2006;25:4675-4682.
-
(2006)
Oncogene
, vol.25
, pp. 4675-4682
-
-
King, A.1
Selak, M.A.2
Gottlieb, E.3
-
6
-
-
19944433653
-
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
-
Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005;7:77-85.
-
(2005)
Cancer Cell
, vol.7
, pp. 77-85
-
-
Selak, M.A.1
Armour, S.M.2
MacKenzie, E.D.3
-
7
-
-
33744783432
-
Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
-
Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006;9: 425-434.
-
(2006)
Cancer Cell
, vol.9
, pp. 425-434
-
-
Fantin, V.R.1
St-Pierre, J.2
Leder, P.3
-
8
-
-
33846417615
-
Metabolic changes during carcinogenesis: Potential impact on invasiveness
-
Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ. Metabolic changes during carcinogenesis: Potential impact on invasiveness. J Theor Biol 2007;244:703-713.
-
(2007)
J Theor Biol
, vol.244
, pp. 703-713
-
-
Smallbone, K.1
Gatenby, R.A.2
Gillies, R.J.3
Maini, P.K.4
Gavaghan, D.J.5
-
9
-
-
8144228566
-
Why do cancers have high aerobic glycolysis?
-
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-899.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
11
-
-
0031420249
-
Dietary fat and energy modulation of biochemical events in tumor promotion
-
Birt DF, Copenhaver J, Barnett T, Pelling JC, Luthra R. Dietary fat and energy modulation of biochemical events in tumor promotion. Adv Exp Med Biol 1997;400B:925-929.
-
(1997)
Adv Exp Med Biol
, vol.400 B
, pp. 925-929
-
-
Birt, D.F.1
Copenhaver, J.2
Barnett, T.3
Pelling, J.C.4
Luthra, R.5
-
12
-
-
0042023373
-
Energy restriction and the risk of spontaneous mammary tumors in mice: A meta-analysis
-
Dirx MJ, Zeegers MP, Dagnelie PC, van den BT, van den Brandt PA. Energy restriction and the risk of spontaneous mammary tumors in mice: A meta-analysis. Int J Cancer 2003;106:766-770.
-
(2003)
Int J Cancer
, vol.106
, pp. 766-770
-
-
Dirx, M.J.1
Zeegers, M.P.2
Dagnelie, P.C.3
van den, B.T.4
van den5
Brandt, P.A.6
-
14
-
-
0036315478
-
Caloric restriction and experimental carcinogenesis
-
Kritchevsky D. Caloric restriction and experimental carcinogenesis. Hybrid Hybridomics 2002;21:147-151.
-
(2002)
Hybrid Hybridomics
, vol.21
, pp. 147-151
-
-
Kritchevsky, D.1
-
15
-
-
0345269103
-
Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms
-
Mai V, Colbert LH, Berrigan D, et al. Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 2003;63:1752-1755.
-
(2003)
Cancer Res
, vol.63
, pp. 1752-1755
-
-
Mai, V.1
Colbert, L.H.2
Berrigan, D.3
-
16
-
-
0031427030
-
Effect of caloric restriction on pre-malignant and malignant stages of mammary carcinogenesis
-
Zhu Z, Haegele AD, Thompson HJ. Effect of caloric restriction on pre-malignant and malignant stages of mammary carcinogenesis. Carcinogenesis 1997;18:1007-1012.
-
(1997)
Carcinogenesis
, vol.18
, pp. 1007-1012
-
-
Zhu, Z.1
Haegele, A.D.2
Thompson, H.J.3
-
17
-
-
23044456402
-
2-Deoxyglucose as an energy restriction mimetic agent: Effects on mammary carcinogenesis and on mammary tumor cell growth in vitro
-
Zhu Z, Jiang W, McGinley JN, Thompson HJ. 2-Deoxyglucose as an energy restriction mimetic agent: Effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 2005;65:7023-7030.
-
(2005)
Cancer Res
, vol.65
, pp. 7023-7030
-
-
Zhu, Z.1
Jiang, W.2
McGinley, J.N.3
Thompson, H.J.4
-
18
-
-
0346221605
-
The inhibition of brain hexokinase by adenosinediphosphate and sulfhydryl reagents
-
Sols A, Crane RK. The inhibition of brain hexokinase by adenosinediphosphate and sulfhydryl reagents. J Biol Chem 1954;206:925-936.
-
(1954)
J Biol Chem
, vol.206
, pp. 925-936
-
-
Sols, A.1
Crane, R.K.2
-
19
-
-
0001376109
-
The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro
-
Tower DB. The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J Neurochem 1958;3:185-205.
-
(1958)
J Neurochem
, vol.3
, pp. 185-205
-
-
Tower, D.B.1
-
20
-
-
0031007065
-
The AMP-activated protein kinase-fuel gauge of the mammalian cell?
-
Hardie DG, Carling D. The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur J Biochem 1997;246: 259-273.
-
(1997)
Eur J Biochem
, vol.246
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
21
-
-
0037025356
-
AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling
-
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002;277: 23977-23980.
-
(2002)
J Biol Chem
, vol.277
, pp. 23977-23980
-
-
Bolster, D.R.1
Crozier, S.J.2
Kimball, S.R.3
Jefferson, L.S.4
-
22
-
-
0037276069
-
A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway
-
Kimura N, Tokunaga C, Dalal S, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 2003;8:65-79.
-
(2003)
Genes Cells
, vol.8
, pp. 65-79
-
-
Kimura, N.1
Tokunaga, C.2
Dalal, S.3
-
23
-
-
0036364274
-
Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes
-
Krause U, Bertrand L, Hue L. Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem 2002;269:3751-3759.
-
(2002)
Eur J Biochem
, vol.269
, pp. 3751-3759
-
-
Krause, U.1
Bertrand, L.2
Hue, L.3
-
24
-
-
0035976615
-
Phosphatidic acid-mediated mitogenic activation of mTOR signaling
-
Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001;294:1942-1945.
-
(2001)
Science
, vol.294
, pp. 1942-1945
-
-
Fang, Y.1
Vilella-Bach, M.2
Bachmann, R.3
Flanigan, A.4
Chen, J.5
-
25
-
-
0033429554
-
Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
-
Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999;344:427-431.
-
(1999)
Biochem J
, vol.344
, pp. 427-431
-
-
Nave, B.T.1
Ouwens, M.2
Withers, D.J.3
Alessi, D.R.4
Shepherd, P.R.5
-
26
-
-
0034629365
-
FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions
-
Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 2000;275:7416-7423.
-
(2000)
J Biol Chem
, vol.275
, pp. 7416-7423
-
-
Peterson, R.T.1
Beal, P.A.2
Comb, M.J.3
Schreiber, S.L.4
-
27
-
-
12544249162
-
Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways
-
Gerasimovskaya EV, Tucker DA, Weiser-Evans M, et al. Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways. J Biol Chem 2005;280:1838-1848.
-
(2005)
J Biol Chem
, vol.280
, pp. 1838-1848
-
-
Gerasimovskaya, E.V.1
Tucker, D.A.2
Weiser-Evans, M.3
-
28
-
-
27744588780
-
Tuberous sclerosis: A GAP at the crossroads of multiple signaling pathways
-
Kwiatkowski DJ, Manning BD. Tuberous sclerosis: A GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 2005;14:R251-R258.
-
(2005)
Hum Mol Genet
, vol.14
-
-
Kwiatkowski, D.J.1
Manning, B.D.2
-
29
-
-
0242384915
-
Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes
-
Yin W, Mu J, Birnbaum MJ. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J Biol Chem 2003;278:43074-43080.
-
(2003)
J Biol Chem
, vol.278
, pp. 43074-43080
-
-
Yin, W.1
Mu, J.2
Birnbaum, M.J.3
-
30
-
-
0037444157
-
Effect of energy restriction on cell cycle machinery in 1-methyl-1-nitrosourea-induced mammary carcinomas in rats
-
Jiang W, Zhu Z, Thompson HJ. Effect of energy restriction on cell cycle machinery in 1-methyl-1-nitrosourea-induced mammary carcinomas in rats. Cancer Res 2003;63:1228-1234.
-
(2003)
Cancer Res
, vol.63
, pp. 1228-1234
-
-
Jiang, W.1
Zhu, Z.2
Thompson, H.J.3
-
34
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115: 577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
35
-
-
0032520009
-
4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway
-
Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998;12:502-513.
-
(1998)
Genes Dev
, vol.12
, pp. 502-513
-
-
Gingras, A.C.1
Kennedy, S.G.2
O'Leary, M.A.3
Sonenberg, N.4
Hay, N.5
-
36
-
-
0036385637
-
Coordinate regulation of translation by the PI 3-kinase and mTOR pathways
-
Martin KA, Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 2002; 86:1-39.
-
(2002)
Adv Cancer Res
, vol.86
, pp. 1-39
-
-
Martin, K.A.1
Blenis, J.2
-
37
-
-
1442325390
-
The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation
-
Martin KA, Rzucidlo EM, Merenick BL, et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol 2004;286:C507-C517.
-
(2004)
Am J Physiol Cell Physiol
, vol.286
-
-
Martin, K.A.1
Rzucidlo, E.M.2
Merenick, B.L.3
-
38
-
-
24044474689
-
Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway
-
Lee CC, Huang CC, Wu MY, Hsu KS. Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J Biol Chem 2005;280:18543-18550.
-
(2005)
J Biol Chem
, vol.280
, pp. 18543-18550
-
-
Lee, C.C.1
Huang, C.C.2
Wu, M.Y.3
Hsu, K.S.4
-
39
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001;15:807-826.
-
(2001)
Genes Dev
, vol.15
, pp. 807-826
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
40
-
-
0032054816
-
The mRNA 5′ cap-binding protein eIF4E and control of cell growth
-
Sonenberg N, Gingras AC. The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 1998;10:268-275.
-
(1998)
Curr Opin Cell Biol
, vol.10
, pp. 268-275
-
-
Sonenberg, N.1
Gingras, A.C.2
-
41
-
-
0036290846
-
Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate
-
Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 2002;317:309-323.
-
(2002)
J Mol Biol
, vol.317
, pp. 309-323
-
-
Scott, J.W.1
Norman, D.G.2
Hawley, S.A.3
Kontogiannis, L.4
Hardie, D.G.5
-
42
-
-
0037251455
-
The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity
-
Viollet B, Andreelli F, Jorgensen SB, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003;111:97 -98.
-
(2003)
J Clin Invest
, vol.111
, pp. 97-98
-
-
Viollet, B.1
Andreelli, F.2
Jorgensen, S.B.3
-
43
-
-
0036788626
-
An experimental paradigm for studying the cellular and molecular mecnanisms of cancer inhibition by energy restriction
-
Zhu Z, Jiang W, Thompson HJ. An experimental paradigm for studying the cellular and molecular mecnanisms of cancer inhibition by energy restriction. Mol Carcinog 2002;35:51-56.
-
(2002)
Mol Carcinog
, vol.35
, pp. 51-56
-
-
Zhu, Z.1
Jiang, W.2
Thompson, H.J.3
-
45
-
-
0033534724
-
Control of glycogen synthesis in cultured human muscle cells
-
Halse R, Rochford JJ, McCormack JG, Vandenheede JR, Hemmings BA, Yeaman SJ. Control of glycogen synthesis in cultured human muscle cells. J Biol Chem 1999;274:776-780.
-
(1999)
J Biol Chem
, vol.274
, pp. 776-780
-
-
Halse, R.1
Rochford, J.J.2
McCormack, J.G.3
Vandenheede, J.R.4
Hemmings, B.A.5
Yeaman, S.J.6
|