-
1
-
-
53649087323
-
-
Azacyclohexatriene-2-ylidene was first postulated to explain the accelerated decarboxylation rate of 2-picolinic acid: a P. Dyson, D. L. Hamminck, J. Chem. Soc. 1937, 1724;
-
Azacyclohexatriene-2-ylidene was first postulated to explain the accelerated decarboxylation rate of 2-picolinic acid: a) P. Dyson, D. L. Hamminck, J. Chem. Soc. 1937, 1724;
-
-
-
-
3
-
-
0029960585
-
-
a) D. Lavorato, J. K. Terlouw, T. K. Dargel, E. Koch, G. A. McGibbon, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 11898;
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 11898
-
-
Lavorato, D.1
Terlouw, J.K.2
Dargel, T.K.3
Koch, E.4
McGibbon, G.A.5
Schwarz, H.6
-
4
-
-
0002357796
-
-
D. Lavora to, J. K. Terlouw, G. A. McGibbon, T. K. Dargel, E. Koch, H. Schwarz, Int. J. Mass Spectrom. 1998, 179/180, 7.
-
b) D. Lavora to, J. K. Terlouw, G. A. McGibbon, T. K. Dargel, E. Koch, H. Schwarz, Int. J. Mass Spectrom. 1998, 179/180, 7.
-
-
-
-
5
-
-
33749518082
-
-
a) E. Alvarez, S. Conejero, M. Paneque, A. Petronilho, M. L. Poveda, O. Serrano, E. Carmona, J. Am. Chem. Soc. 2006, 128, 13060;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 13060
-
-
Alvarez, E.1
Conejero, S.2
Paneque, M.3
Petronilho, A.4
Poveda, M.L.5
Serrano, O.6
Carmona, E.7
-
6
-
-
33749574388
-
-
an analogous reaction has been reported for a quinoline derivative: b M. Esteruelas, F. J. Fernández-Alvarez, E. Oñate, J. Am. Chem. Soc. 2006, 128, 13044;
-
an analogous reaction has been reported for a quinoline derivative: b) M. Esteruelas, F. J. Fernández-Alvarez, E. Oñate, J. Am. Chem. Soc. 2006, 128, 13044;
-
-
-
-
7
-
-
53549097177
-
-
review: c
-
review: c) D. Kunz, Angew. Chem. 2007, 119, 3473;
-
(2007)
Angew. Chem
, vol.119
, pp. 3473
-
-
Kunz, D.1
-
9
-
-
53649089360
-
-
-1. These data are in good agreement with our own results referred to herein. To allow the consistent comparison of computed data, we base our discussion on the data we obtained.
-
-1. These data are in good agreement with our own results referred to herein. To allow the consistent comparison of computed data, we base our discussion on the data we obtained.
-
-
-
-
12
-
-
0039953196
-
-
see also
-
b) see also: A. J. Arduengo III, J. R. Goerlich, R. Krafczyk, W. J. Marshall, Angew. Chem. 1998, 110, 2062;
-
(1998)
Angew. Chem
, vol.110
, pp. 2062
-
-
Arduengo III, A.J.1
Goerlich, J.R.2
Krafczyk, R.3
Marshall, W.J.4
-
14
-
-
34548746361
-
-
T. Riehm, G. DePaoli, A. Konradsson, L. de Cola, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2007, 13, 7317.
-
(2007)
Chem. Eur. J
, vol.13
, pp. 7317
-
-
Riehm, T.1
DePaoli, G.2
Konradsson, A.3
de Cola, L.4
Wadepohl, H.5
Gade, L.H.6
-
15
-
-
53649094513
-
-
All calculations were performed using the Gaussian 03 program package.[7a] The structures were optimized without symmetry constraints with the DFT/B3PW91 functional using the 6-311g(d,p, 6-31g(d,p, and sto-3g basis sets. While the dimerization reaction of two TAPP carbene isomers is approximately thermoneutral, the trimerization of three TAPP molecules is exothermic (18.6 kcal mol-1, 6-31g(d,p, A tetramer could not be calculated with the 6-31g(d,p) basis set. However, a comparison of the whole series up to the tetramer with the B3PW91/sto-3g tool confirmed the trend of increasing stability on going to higher oligomers. A detailed description of the methods is provided in the Supporting Information. a) Gaussian 03, Revision B.03, M. J. Frisch, et al, see the Supporting Information
-
-1, 6-31g(d,p)). A tetramer could not be calculated with the 6-31g(d,p) basis set. However, a comparison of the whole series up to the tetramer with the B3PW91/sto-3g tool confirmed the trend of increasing stability on going to higher oligomers. A detailed description of the methods is provided in the Supporting Information. a) Gaussian 03, Revision B.03, M. J. Frisch, et al., see the Supporting Information.
-
-
-
-
16
-
-
53649095254
-
-
This expectation was also borne out from the investigation by Schwarz and co-workers reference [2a, on the generation of isopyridine. It was found that the energy difference between the tautomers was much reduced for the radical cations: 6-7 kcal mol-1 and ca. 1 kcal mol-1 for B3LYP. Since the adsorption of the aromatic compounds on the Cu surface is thought to involve a transfer of charge between adsorbate and substrate, a similar decrease of the energy difference between the monomer and the activated isomeric form might be expected. Unfortunately, the currently available computational methods do not allow the reliable modeling of this aspect
-
-1 for B3LYP. Since the adsorption of the aromatic compounds on the Cu surface is thought to involve a transfer of charge between adsorbate and substrate, a similar decrease of the energy difference between the monomer and the "activated" isomeric form might be expected. Unfortunately, the currently available computational methods do not allow the reliable modeling of this aspect.
-
-
-
-
17
-
-
0000898987
-
-
Examples: acetylene polymers by photopolymerization: a H. Ozaki, T. Funaki, Y. Mazaki, S. Masuda, Y. Harada, J. Am. Chem. Soc. 1995, 117, 5596;
-
Examples: acetylene polymers by photopolymerization: a) H. Ozaki, T. Funaki, Y. Mazaki, S. Masuda, Y. Harada, J. Am. Chem. Soc. 1995, 117, 5596;
-
-
-
-
19
-
-
0035825673
-
-
by STM-tip-induced polymerization: c Y. Okawa, M. Aono, Nature 2001, 409, 683;
-
by STM-tip-induced polymerization: c) Y. Okawa, M. Aono, Nature 2001, 409, 683;
-
-
-
-
22
-
-
0041568666
-
-
f) A. Miura, S. De Feyter, M. M. S. Abdel-Mottaleb, A. Gesquiere, P. C. M. Grim, G. Moessner, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, Langmuir 2003, 19, 6474;
-
(2003)
Langmuir
, vol.19
, pp. 6474
-
-
Miura, A.1
De Feyter, S.2
Abdel-Mottaleb, M.M.S.3
Gesquiere, A.4
Grim, P.C.M.5
Moessner, G.6
Sieffert, M.7
Klapper, M.8
Müllen, K.9
De Schryver, F.C.10
-
23
-
-
34447135011
-
-
oxidative polymerization of aniline to polyaniline (PAN) in sulfuric acid: g) L. Y. O. Yang, C. Chang, S. Liu, C. Wu, S. L. Yau, J. Am. Chem. Soc. 2007, 129, 8076;
-
oxidative polymerization of aniline to polyaniline (PAN) in sulfuric acid: g) L. Y. O. Yang, C. Chang, S. Liu, C. Wu, S. L. Yau, J. Am. Chem. Soc. 2007, 129, 8076;
-
-
-
-
24
-
-
3342934095
-
-
for the generation of polythiophene on surfaces, see: h
-
for the generation of polythiophene on surfaces, see: h) H. Sakaguchi, H. Matsumura, H. Gong, Nat. Mater. 2004, 3, 551;
-
(2004)
Nat. Mater
, vol.3
, pp. 551
-
-
Sakaguchi, H.1
Matsumura, H.2
Gong, H.3
-
25
-
-
27744480229
-
-
i) H. Sakaguchi, H. Matsumura, H. Gong, A. M. Abouelwafa, Science 2005, 310, 1002.
-
(2005)
Science
, vol.310
, pp. 1002
-
-
Sakaguchi, H.1
Matsumura, H.2
Gong, H.3
Abouelwafa, A.M.4
-
26
-
-
53649097331
-
-
See the Supporting Information
-
See the Supporting Information.
-
-
-
-
27
-
-
0038108401
-
-
a) N. Lin, A. Dmitriev, J. Weckesser, J. V. Barth, K. Kern, Angew. Chem. 2002, 114, 4973;
-
(2002)
Angew. Chem
, vol.114
, pp. 4973
-
-
Lin, N.1
Dmitriev, A.2
Weckesser, J.3
Barth, J.V.4
Kern, K.5
-
29
-
-
0036970665
-
-
b) M. M. S. Abdel-Mottaleb, N. Schuurmans, S. De Feyter, J. Van Esch, B. L. Feringa, F. C. De Schryver, Chem. Commun. 2002, 1894;
-
(2002)
Chem. Commun
, pp. 1894
-
-
Abdel-Mottaleb, M.M.S.1
Schuurmans, N.2
De Feyter, S.3
Van Esch, J.4
Feringa, B.L.5
De Schryver, F.C.6
-
30
-
-
1642369401
-
-
c) A. Dmitriev, H. Spillmann, N. Lin, J. V. Barth, K. Kern, Angew. Chem. 2003, 115, 2774;
-
(2003)
Angew. Chem
, vol.115
, pp. 2774
-
-
Dmitriev, A.1
Spillmann, H.2
Lin, N.3
Barth, J.V.4
Kern, K.5
-
32
-
-
33750006635
-
-
d) T. Classen, G. Fratesi, G. Costantini, S. Fabris, F. L. Stadler, C. Kim, S. de Gironcoli, S. Baroni, K. Kern, Angew. Chem. 2005, 117, 6298;
-
(2005)
Angew. Chem
, vol.117
, pp. 6298
-
-
Classen, T.1
Fratesi, G.2
Costantini, G.3
Fabris, S.4
Stadler, F.L.5
Kim, C.6
de Gironcoli, S.7
Baroni, S.8
Kern, K.9
-
34
-
-
1842731276
-
-
e) S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, K. Kern, Nat. Mater. 2004, 3, 229;
-
(2004)
Nat. Mater
, vol.3
, pp. 229
-
-
Stepanow, S.1
Lingenfelder, M.2
Dmitriev, A.3
Spillmann, H.4
Delvigne, E.5
Lin, N.6
Deng, X.7
Cai, C.8
Barth, J.V.9
Kern, K.10
-
35
-
-
33845434139
-
-
f) M. Ruben, D. Payer, A. Landa, A. Comisso, C. Gattinoni, N. Lin, J.-P. Collin, J.-P. Sauvage, A. De Vita, K. Kern, J. Am. Chem. Soc. 2006, 128, 15644;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 15644
-
-
Ruben, M.1
Payer, D.2
Landa, A.3
Comisso, A.4
Gattinoni, C.5
Lin, N.6
Collin, J.-P.7
Sauvage, J.-P.8
De Vita, A.9
Kern, K.10
-
36
-
-
35648940732
-
-
g) S. Stepanow, N. Lin, D. Payer, U. Schlickum, F. Klappenberger, G. Zoppellaro, M. Ruben, H. Brune, J. V. Barth, K. Kern, Angew. Chem. 2007, 119, 724;
-
(2007)
Angew. Chem
, vol.119
, pp. 724
-
-
Stepanow, S.1
Lin, N.2
Payer, D.3
Schlickum, U.4
Klappenberger, F.5
Zoppellaro, G.6
Ruben, M.7
Brune, H.8
Barth, J.V.9
Kern, K.10
-
39
-
-
53649106740
-
-
The N1s XPS spectrum for the coordination polymer exhibits one peak at 398.74 eV. The spectrum for the chains features a broadened peak to which two peaks at 398.74 and 398.10 eV are fitted under the assumption that the peak found for the coordination polymer also appears for the chains. The first peak can be attributed to the N atoms of TAPP, which all have the same chemical environment. The second peak at 398.10 eV must result from a changed chemical environment arising from the polymerization and thus can be attributed to the N atoms to which a H atom is now attached. In contrast, the position of the C1s peak remained unaltered in the annealing process (see the Supporting Information): M. Matena, T. Riehm, K. Müller, J. Lobo Checa, M. Stöhr, T. A. Jung, L. H. Gade, unpublished results.
-
The N1s XPS spectrum for the coordination polymer exhibits one peak at 398.74 eV. The spectrum for the chains features a broadened peak to which two peaks at 398.74 and 398.10 eV are fitted under the assumption that the peak found for the coordination polymer also appears for the chains. The first peak can be attributed to the N atoms of TAPP, which all have the same chemical environment. The second peak at 398.10 eV must result from a changed chemical environment arising from the polymerization and thus can be attributed to the N atoms to which a H atom is now attached. In contrast, the position of the C1s peak remained unaltered in the annealing process (see the Supporting Information): M. Matena, T. Riehm, K. Müller, J. Lobo Checa, M. Stöhr, T. A. Jung, L. H. Gade, unpublished results.
-
-
-
-
40
-
-
0000092002
-
-
Selected key references concerning the mechanical manipulation of molecules on surfaces with the aid of an STM tip: a J. A. Stroscio, D. M. Eigler, Science 1991, 254, 1319;
-
Selected key references concerning the mechanical manipulation of molecules on surfaces with the aid of an STM tip: a) J. A. Stroscio, D. M. Eigler, Science 1991, 254, 1319;
-
-
-
-
43
-
-
33646727851
-
-
d) R. Otero, F. Rosei, F. Besenbacher, Annu. Rev. Phys. Chem. 2006, 57, 497;
-
(2006)
Annu. Rev. Phys. Chem
, vol.57
, pp. 497
-
-
Otero, R.1
Rosei, F.2
Besenbacher, F.3
-
44
-
-
0000869313
-
-
e) F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, C. Joachim, Appl. Phys. Lett. 2001, 78, 306;
-
(2001)
Appl. Phys. Lett
, vol.78
, pp. 306
-
-
Moresco, F.1
Meyer, G.2
Rieder, K.-H.3
Tang, H.4
Gourdon, A.5
Joachim, C.6
-
46
-
-
85177130131
-
-
More recently, extensive investigations into the controlled lateral manipulation of large molecules possessing multiple and even partially addressable degrees of freedom have been reported: g P. H. Beton, A. W. Dunn, P. Moriarty, Appl. Phys. Lett. 1995, 67, 1075;
-
More recently, extensive investigations into the controlled lateral manipulation of large molecules possessing multiple and even partially addressable degrees of freedom have been reported: g) P. H. Beton, A. W. Dunn, P. Moriarty, Appl. Phys. Lett. 1995, 67, 1075;
-
-
-
-
47
-
-
0001536394
-
-
h) T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, C. Joachim, Science 1996, 271, 181;
-
(1996)
Science
, vol.271
, pp. 181
-
-
Jung, T.A.1
Schlittler, R.R.2
Gimzewski, J.K.3
Tang, H.4
Joachim, C.5
-
48
-
-
0035137061
-
-
i) F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, C. Joachim, Phys. Rev. Lett. 2001, 86, 672;
-
(2001)
Phys. Rev. Lett
, vol.86
, pp. 672
-
-
Moresco, F.1
Meyer, G.2
Rieder, K.-H.3
Tang, H.4
Gourdon, A.5
Joachim, C.6
-
49
-
-
0037435846
-
-
j) C. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Lüthi, R. R. Schlittler, J. K. Gimzewski, H. Tang, C. Joachim, Phys. Rev. Lett. 2003, 90, 066107;
-
(2003)
Phys. Rev. Lett
, vol.90
, pp. 066107
-
-
Loppacher, C.1
Guggisberg, M.2
Pfeiffer, O.3
Meyer, E.4
Bammerlin, M.5
Lüthi, R.6
Schlittler, R.R.7
Gimzewski, J.K.8
Tang, H.9
Joachim, C.10
-
50
-
-
0000139398
-
-
k) C. Joachim, J. K. Gimzewski, H. Tang, Phys. Rev. B 1998, 58, 16407;
-
(1998)
Phys. Rev. B
, vol.58
, pp. 16407
-
-
Joachim, C.1
Gimzewski, J.K.2
Tang, H.3
-
51
-
-
0037066539
-
-
l) F. Rosei, M. Schunack, P. Jiang, A. Gourdon, E. Lægsgaard, I. Stensgaard, C. Joachim, F. Besenbacher, Science 2002, 296, 328.
-
(2002)
Science
, vol.296
, pp. 328
-
-
Rosei, F.1
Schunack, M.2
Jiang, P.3
Gourdon, A.4
Lægsgaard, E.5
Stensgaard, I.6
Joachim, C.7
Besenbacher, F.8
-
52
-
-
0033607490
-
-
The STM tip was even used to induce chemical reactions: m H. J. Lee, W. Ho, Science 1999, 286, 1719;
-
The STM tip was even used to induce chemical reactions: m) H. J. Lee, W. Ho, Science 1999, 286, 1719;
-
-
-
-
53
-
-
0037461521
-
-
n) W. Ho, J. Chem. Phys. 2002, 117, 11033;
-
(2002)
J. Chem. Phys
, vol.117
, pp. 11033
-
-
Ho, W.1
-
54
-
-
0034714664
-
-
o) S.-W. Hla, L. Bartels, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 2000, 85, 2777.
-
(2000)
Phys. Rev. Lett
, vol.85
, pp. 2777
-
-
Hla, S.-W.1
Bartels, L.2
Meyer, G.3
Rieder, K.-H.4
-
55
-
-
53649101254
-
-
Thermal dehydrogenation of DPDI on Cu surfaces: M. Stöhr, M. Wahl, C. H. Galka, T. Riehm, T. A. Jung, L. H. Gade, Angew. Chem. 2005, 117, 7560;
-
Thermal dehydrogenation of DPDI on Cu surfaces: M. Stöhr, M. Wahl, C. H. Galka, T. Riehm, T. A. Jung, L. H. Gade, Angew. Chem. 2005, 117, 7560;
-
-
-
-
58
-
-
0005024285
-
-
b) M. F. Crommie, C. P. Lutz, D. M. Eigler, Nature 1993, 363, 524.
-
(1993)
Nature
, vol.363
, pp. 524
-
-
Crommie, M.F.1
Lutz, C.P.2
Eigler, D.M.3
-
59
-
-
47949083582
-
-
For very recent contributions to this field, see: a
-
For very recent contributions to this field, see: a) S. Weigelt, C. Busse, C. Bombis, M. M. Knudsen, K. V. Gothelf, T. Strunskus, C. Wöll, M. Dahlboom, B. Hammer, E. Laegsgaard, F. Besenbacher, T. R. Linderoth, Angew. Chem. 2007, 119, 9387;
-
(2007)
Angew. Chem
, vol.119
, pp. 9387
-
-
Weigelt, S.1
Busse, C.2
Bombis, C.3
Knudsen, M.M.4
Gothelf, K.V.5
Strunskus, T.6
Wöll, C.7
Dahlboom, M.8
Hammer, B.9
Laegsgaard, E.10
Besenbacher, F.11
Linderoth, T.R.12
-
61
-
-
35948972833
-
-
b) L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht, Nat. Nanotechnol. 2007, 2, 687.
-
(2007)
Nat. Nanotechnol
, vol.2
, pp. 687
-
-
Grill, L.1
Dyer, M.2
Lafferentz, L.3
Persson, M.4
Peters, M.V.5
Hecht, S.6
-
62
-
-
34047109564
-
-
I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A. M. Baro, Rev. Sci. Instrum. 2007, 78, 013705.
-
(2007)
Rev. Sci. Instrum
, vol.78
, pp. 013705
-
-
Horcas, I.1
Fernandez, R.2
Gomez-Rodriguez, J.M.3
Colchero, J.4
Gomez-Herrero, J.5
Baro, A.M.6
|