-
2
-
-
28044456258
-
-
For a collection of recent overviews of the principles of molecular self-assembly, see the whole volume of Science 2002, 295.
-
(2002)
Science
, vol.295
-
-
-
3
-
-
0037192455
-
-
a) J.-M. Lehn, Science 2002, 295, 2400;
-
(2002)
Science
, vol.295
, pp. 2400
-
-
Lehn, J.-M.1
-
8
-
-
0037192503
-
-
f) T. Kato, Science 2002, 295, 2414.
-
(2002)
Science
, vol.295
, pp. 2414
-
-
Kato, T.1
-
10
-
-
0035846145
-
-
for important contributions that concern weak interactions which govern the self-assembly at surfaces as determined by STM, see: b) T. Yokoyama, S. Yokoyama, Y. Okuno, S. Mashiko, Nature 2001, 413, 619;
-
(2001)
Nature
, vol.413
, pp. 619
-
-
Yokoyama, T.1
Yokoyama, S.2
Okuno, Y.3
Mashiko, S.4
-
11
-
-
0034424538
-
-
c) S. Ito, M. Wehmeier, J. D. Brand, C. Kubel, R. Epsch, J. P. Rabe, K. Müllen, Chem. Eur. J. 2000, 6, 4327.
-
(2000)
Chem. Eur. J.
, vol.6
, pp. 4327
-
-
Ito, S.1
Wehmeier, M.2
Brand, J.D.3
Kubel, C.4
Epsch, R.5
Rabe, J.P.6
Müllen, K.7
-
12
-
-
0035959114
-
-
a) J. Weckesser, A. De Vita, J. V. Barth, C. Cai, K. Kern, Phys. Rev. Lett. 2001, 87, 096 101;
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 096101
-
-
Weckesser, J.1
De Vita, A.2
Barth, J.V.3
Cai, C.4
Kern, K.5
-
13
-
-
0037063109
-
-
b) A. Dmitriev, N. Lin, J. Weckesser, J. V. Barth, K. Kern, J. Phys. Chem. B 2002, 106, 6907;
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 6907
-
-
Dmitriev, A.1
Lin, N.2
Weckesser, J.3
Barth, J.V.4
Kern, K.5
-
14
-
-
0037131494
-
-
c) M. de Wild, S. Berner, H. Suzuki, H. Yanagi, D. Schlettwein, S. Ivan, A. Baratoff, H.-J. Güntherodt, T. A. Jung, ChemPhysChem 2002, 3, 881;
-
(2002)
ChemPhysChem
, vol.3
, pp. 881
-
-
De Wild, M.1
Berner, S.2
Suzuki, H.3
Yanagi, H.4
Schlettwein, D.5
Ivan, S.6
Baratoff, A.7
Güntherodt, H.-J.8
Jung, T.A.9
-
15
-
-
0037416666
-
-
d) S. De Feyter, M. Larsson, N. Schuurmans, B. Verkuijl, G. Zoriniants, A. Gesquiere, M. M. Abdel-Mottaleb, J. van Esch, B. L. Feringa, J. van Stam, F. De Schryver, Chem. Eur. J. 2003, 9, 1198;
-
(2003)
Chem. Eur. J.
, vol.9
, pp. 1198
-
-
De Feyter, S.1
Larsson, M.2
Schuurmans, N.3
Verkuijl, B.4
Zoriniants, G.5
Gesquiere, A.6
Abdel-Mottaleb, M.M.7
Van Esch, J.8
Feringa, B.L.9
Van Stam, J.10
De Schryver, F.11
-
16
-
-
22944468073
-
-
e) D. Bonifazi, H. Spillmann, A. Kiebele, M. de Wild, P. Seiler, F. Cheng, H.-J. Güntherodt, T. Jung, F. Diederich, Angew. Chem. 2004, 116, 4863;
-
(2004)
Angew. Chem.
, vol.116
, pp. 4863
-
-
Bonifazi, D.1
Spillmann, H.2
Kiebele, A.3
De Wild, M.4
Seiler, P.5
Cheng, F.6
Güntherodt, H.-J.7
Jung, T.8
Diederich, F.9
-
18
-
-
0035781082
-
-
review: f) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 2001, 101, 4071.
-
(2001)
Chem. Rev.
, vol.101
, pp. 4071
-
-
Brunsveld, L.1
Folmer, B.J.B.2
Meijer, E.W.3
Sijbesma, R.P.4
-
19
-
-
0042865998
-
-
J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness, P. H. Beton, Nature 2003, 424, 1029.
-
(2003)
Nature
, vol.424
, pp. 1029
-
-
Theobald, J.A.1
Oxtoby, N.S.2
Phillips, M.A.3
Champness, N.R.4
Beton, P.H.5
-
20
-
-
10844256940
-
-
a) G. Gilli, F. Bellici, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc. 1989, 111, 1023;
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 1023
-
-
Gilli, G.1
Bellici, F.2
Ferretti, V.3
Bertolasi, V.4
-
21
-
-
12044257628
-
-
b) P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc. 1994, 116, 909;
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 909
-
-
Gilli, P.1
Bertolasi, V.2
Ferretti, V.3
Gilli, G.4
-
22
-
-
1642416324
-
-
c) P. Gilli, V. Bertolasi, L. Pretto, V. Ferretti, G. Gilli, J. Am. Chem. Soc. 2004, 126, 3845.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 3845
-
-
Gilli, P.1
Bertolasi, V.2
Pretto, L.3
Ferretti, V.4
Gilli, G.5
-
23
-
-
0000799687
-
-
K. W. Hellmann, C. H. Galka, I. Rüdenauer, L. H. Gade, I. J. Scowen, M. McPartlin, Angew. Chem. 1998, 110, 2053;
-
(1998)
Angew. Chem.
, vol.110
, pp. 2053
-
-
Hellmann, K.W.1
Galka, C.H.2
Rüdenauer, I.3
Gade, L.H.4
Scowen, I.J.5
McPartlin, M.6
-
25
-
-
0037119286
-
-
L. H. Gade, C. H. Galka, K. W. Hellmann, R. M. Williams, L. de Cola, I. J. Scowen, M. McPartlin, Chem. Eur. J. 2002, 8, 3732.
-
(2002)
Chem. Eur. J.
, vol.8
, pp. 3732
-
-
Gade, L.H.1
Galka, C.H.2
Hellmann, K.W.3
Williams, R.M.4
De Cola, L.5
Scowen, I.J.6
McPartlin, M.7
-
26
-
-
28044439337
-
-
Diplomarbeit, Universität Heidelberg
-
-1, vs calomel electrode): T. Riehm, Diplomarbeit, Universität Heidelberg 2005. Derivatives of the oxidized form 1b do not appear to be stable as bulk materials.
-
(2005)
-
-
Riehm, T.1
-
27
-
-
28044453261
-
-
note
-
An STM image of a monolayer of DPDI molecules on a Cu(111) surface prior to the annealing step is provided in the Supporting Information.
-
-
-
-
28
-
-
28044433151
-
-
note
-
The XPS spectrum of the sample prior to annealing exhibits two individually resolved nitrogen peaks at 399.8 and 397.9 eV binding energy, thus corresponding to the imine and amine groups, whereas only the peak at 399.8 eV remains after annealing at 300°C; this observation is attributed to the "symmetrization" of all the imine nitrogen atoms, which is consistent with the transformation of 1 into 1b.
-
-
-
-
29
-
-
28044439566
-
-
An example for resonance-assisted hydrogen-bonding interactions on surfaces is provided by the formation of guanidine quartets stabilized by cooperative hydrogen bonds: a) R. Otero, M. Schöck, L. M. Molina, E. Laegsgaard, I. Stensgaard, B. Hammer, F. Besenbacher, Angew. Chem. 2005, 44, 2310;
-
(2005)
Angew. Chem.
, vol.44
, pp. 2310
-
-
Otero, R.1
Schöck, M.2
Molina, L.M.3
Laegsgaard, E.4
Stensgaard, I.5
Hammer, B.6
Besenbacher, F.7
-
31
-
-
0042392176
-
-
theoretical analysis: b) G. Louit, A. Hocquet, M. Ghomi, M. Meyer, J. Sühnel, PhysChemComm 2002, 5, 94.
-
(2002)
PhysChemComm
, vol.5
, pp. 94
-
-
Louit, G.1
Hocquet, A.2
Ghomi, M.3
Meyer, M.4
Sühnel, J.5
-
32
-
-
0142124361
-
-
M. Eremtchenko, J. A. Schaefer, F. S. Tautz, Nature 2003, 425, 602; the electron-withdrawing functional groups in PTCDA enhance the π bonding to the metal support, thus locking the molecules into specific sites and orientations.
-
(2003)
Nature
, vol.425
, pp. 602
-
-
Eremtchenko, M.1
Schaefer, J.A.2
Tautz, F.S.3
-
33
-
-
28044448455
-
-
see the Supporting Information
-
Based on a time-lapse series (see the Supporting Information), an approximate value for the diffusion barrier and for the condensation energy can be deduced. According to the procedure described in reference [16], a value of 0.6 eV for the diffusion energy and 0.3 eV for the condensation energy are derived. Mainly, these values should only reflect the energy range for diffusion and condensation as they are obtained in a semi-quantitative way.
-
-
-
-
34
-
-
0001129028
-
-
S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H.-J. Güntherodt, T. A. Jung, Chem. Phys. Lett. 2001, 348, 175.
-
(2001)
Chem. Phys. Lett.
, vol.348
, pp. 175
-
-
Berner, S.1
Brunner, M.2
Ramoino, L.3
Suzuki, H.4
Güntherodt, H.-J.5
Jung, T.A.6
-
35
-
-
28044450106
-
-
note
-
This conclusion is deduced through comparison of the surface area which is covered by the network before and after the second evaporation.
-
-
-
-
36
-
-
0001166226
-
-
a) K. Ziegler, Methoden der Anorganischen Chemie, Houben-Weyl, Vol. IV(2), 1955, p. 729;
-
(1955)
Methoden der Anorganischen Chemie, Houben-Weyl
, vol.4
, Issue.2
, pp. 729
-
-
Ziegler, K.1
|