메뉴 건너뛰기




Volumn 43, Issue 3, 2008, Pages 297-303

Survey of the selection of kernels and hyper-parameters in support vector regression

Author keywords

Hyper parameter determination; Kernel; Model; Support vector regression

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; FINANCIAL DATA PROCESSING; FOOD PROCESSING; REGRESSION ANALYSIS; RISK ASSESSMENT; VECTORS;

EID: 46449134124     PISSN: 02582724     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (20)

References (39)
  • 3
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • SUYÖ KENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Kens, J.A.K.S.1    Vandewalle, J.2
  • 4
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and spare approximation
    • SUYKENS J A K, BRANBANTER J K. Weighted least squares support vector machines: robustness and spare approximation[J]. Neurocomputing, 2002, 48(1): 85-105.
    • (2002) Neurocomputing , vol.48 , Issue.1 , pp. 85-105
    • Suykens, J.A.K.1    Branbanter, J.K.2
  • 6
    • 0344036310 scopus 로고    scopus 로고
    • Interpolation based kernel function's construction
    • Wu Tao, He Hangen, He Mingke. Interpolation based kernel function's construction[J]. Chinese Journal of Computers, 2003, 26(8): 990-996.
    • (2003) Chinese Journal of Computers , vol.26 , Issue.8 , pp. 990-996
    • Wu, T.1    He, H.2    He, M.3
  • 7
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector machine classification
    • GOLD C, SOLLICH P. Model selection for support vector machine classification[J]. Neurocomputing, 2003, 55(1-2): 221-249.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 221-249
    • Gold, C.1    Sollich, P.2
  • 10
    • 0036086881 scopus 로고    scopus 로고
    • Improved SVM regression using mixtures of kernels
    • Honolulu: Institute of Electrical and Electronics Engineers Inc.
    • SMITS G F, JORDAN E M. Improved SVM regression using mixtures of kernels[C]//Proceedings of the International Joint Conference on Neural Networks. Honolulu: Institute of Electrical and Electronics Engineers Inc., 2002, 3: 2785-2790.
    • (2002) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 2785-2790
    • Smits, G.F.1    Jordan, E.M.2
  • 11
    • 28444494043 scopus 로고    scopus 로고
    • An empirical assessment on the robustness of support vector regression with different kernels
    • Guangzhou: Institute of Electrical and Electronics Engineers Computer Society
    • LIU Jingxu, LI Jin, TAN Yuejin. An empirical assessment on the robustness of support vector regression with different kernels[C]//International Conference on Machine Learning and Cybernetics. Guangzhou: Institute of Electrical and Electronics Engineers Computer Society, 2005: 4289-4294.
    • (2005) International Conference on Machine Learning and Cybernetics , pp. 4289-4294
    • Liu, J.1    Li, J.2    Tan, Y.3
  • 12
    • 19044395306 scopus 로고    scopus 로고
    • Modeling of LS-SVM based on mixtures of kernels for MISO systems
    • ZHU Yanfei, WU Jianping, LI Qi, et al. Modeling of LS-SVM based on mixtures of kernels for MISO systems[J]. Control and Decision, 2005, 20(4): 417-425.
    • (2005) Control and Decision , vol.20 , Issue.4 , pp. 417-425
    • Zhu, Y.1    Wu, J.2    Li, Q.3
  • 13
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • VAPNIK V, GOLOWICH S, SMOLA A. Support vector method for function approximation, regression estimation, and signal processing[J]. Neural Information Processing Systems, 1997, 9: 281-287.
    • (1997) Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 15
    • 44049093391 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • SMOLA A J, SCHÖLKOPF B. The connection between regularization operators and support vector kernels[J]. Neural Networks, 1998, 10: 1445-1454.
    • (1998) Neural Networks , vol.10 , pp. 1445-1454
    • Smola, A.J.1    Schölkopf, B.2
  • 16
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: A statistics perspective
    • GENTON M G. Classes of kernels for machine learning: a statistics perspective[J]. Journal of Machine Learning Research, 2001, 2: 299-312.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 18
    • 33748697267 scopus 로고    scopus 로고
    • Support vector machine with scaling kernel and its application in dynamic system identification
    • Hu Dan, XIAO Jian, CHE Chang. Support vector machine with scaling kernel and its application in dynamic system identification[J]. Journal of Southwest Jiaotong University, 2006 4(41): 460-465.
    • (2006) Journal of Southwest Jiaotong University , vol.4 , Issue.41 , pp. 460-465
    • Hu, D.1    Xiao, J.2    Che, C.3
  • 20
    • 34249042729 scopus 로고    scopus 로고
    • Multiple kernel learning for support vector regression
    • QIU S B, LANE T. Multiple kernel learning for support vector regression[DB/OL]. (2005-12-10)[2007-12-10]. http://www.cs.unm.edu/-treport/tr/05-12/QiuLane.
    • (2005)
    • Qiu, S.B.1    Lane, T.2
  • 21
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal v in support vector regression for different noise models and parameters settings
    • CHALIMOURDA A, SCHÖLKOPF B, SMOLA A J. Experimentally optimal v in support vector regression for different noise models and parameters settings[J]. Neural Networks, 2004, 17(1): 127-141.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.J.3
  • 22
    • 20444505293 scopus 로고    scopus 로고
    • Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
    • ÜSTÜN B, MELSSEN W J, OUDENHUIJZEN M. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J]. Analytica Chimica Acta, 2005, 544(1-2): 292-305.
    • (2005) Analytica Chimica Acta , vol.544 , Issue.1-2 , pp. 292-305
    • Üstün, B.1    Melssen, W.J.2    Oudenhuijzen, M.3
  • 23
    • 0141869869 scopus 로고    scopus 로고
    • A pattern search for model selection of support vector regression
    • Philadephia: SIAM
    • MOMMA M, BENNETT B P. A pattern search for model selection of support vector regression[C]//Proceedings of SIAM Conference on Data Mining. Philadephia: SIAM, 2002: 261-274.
    • (2002) Proceedings of SIAM Conference on Data Mining , pp. 261-274
    • Momma, M.1    Bennett, B.P.2
  • 24
    • 0141794580 scopus 로고    scopus 로고
    • Optimizing support vector regression hyperparameters based on cross-validation
    • Portland: Institute of Electrical and Electronics Engineers Inc.
    • KENTARO I, RYOHEI N. Optimizing support vector regression hyperparameters based on cross-validation[C]//Proceedings of the International Joint Conference on Neural Networks. Portland: Institute of Electrical and Electronics Engineers Inc., 2003, 3: 2077-2082.
    • (2003) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 2077-2082
    • Kentaro, I.1    Ryohei, N.2
  • 25
    • 0036825788 scopus 로고    scopus 로고
    • Improved sparse least-squares support vector machines
    • CAWLEY G C, TALBOT N L C. Improved sparse least-squares support vector machines[J]. Neurocomputing, 2002, 48: 1025-1031.
    • (2002) Neurocomputing , vol.48 , pp. 1025-1031
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 26
    • 15844392541 scopus 로고    scopus 로고
    • Fast bootstrap methodology for regression model selection
    • LENDASSE A, SIMON G, WERTZ V. Fast bootstrap methodology for regression model selection[J]. Neurocomputing, 2005, 64(1-4): 161-181.
    • (2005) Neurocomputing , vol.64 , Issue.1-4 , pp. 161-181
    • Lendasse, A.1    Simon, G.2    Wertz, V.3
  • 27
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MACKAY D J C. Bayesian interpolation[J]. Neural Computation, 1992, 4(3): 415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 28
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • GAO J B, GUNN S R, HARRIS C J. A probabilistic framework for SVM regression and error bar estimation[J]. Machine Learning, 2002, 46: 71-89.
    • (2002) Machine Learning , vol.46 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 29
    • 17444378757 scopus 로고    scopus 로고
    • Simple probabilistic predictions for support vector regression
    • Taipei: Department of Computer Science, National Taiwan University
    • LIN C J, WENG R C. Simple probabilistic predictions for support vector regression[R]. Taipei: Department of Computer Science, National Taiwan University, 2004.
    • (2004)
    • Lin, C.J.1    Weng, R.C.2
  • 31
    • 3442902601 scopus 로고    scopus 로고
    • Modeling method based on support vector machines within the Bayesian evidence framework
    • YAN Weiwu, CHANG Junlin, SHAO Huihe. Modeling method based on support vector machines within the Bayesian evidence framework[J]. Control and Decision, 2004, 19(5): 525-533.
    • (2004) Control and Decision , vol.19 , Issue.5 , pp. 525-533
    • Yan, W.1    Chang, J.2    Shao, H.3
  • 32
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • CHU W, KEERTHI S, ONG C J. Bayesian support vector regression using a unified loss function[J]. IEEE Trans. on Neural Networks, 2004, 15(1): 29-44.
    • (2004) IEEE Trans. on Neural Networks , vol.15 , Issue.1 , pp. 29-44
    • Chu, W.1    Keerthi, S.2    Ong, C.J.3
  • 35
    • 17444398555 scopus 로고    scopus 로고
    • Leave one out bounds for support vector regression model selection
    • CHANG M W, LIN C J. Leave one out bounds for support vector regression model selection[J]. Neural Computation, 2005, 17: 1188-1222.
    • (2005) Neural Computation , vol.17 , pp. 1188-1222
    • Chang, M.W.1    Lin, C.J.2
  • 36
    • 0242383459 scopus 로고    scopus 로고
    • SVM regression through variational methods and its sequential implementation
    • GAO J B, GUNN S R, HARRIS C J. SVM regression through variational methods and its sequential implementation[J]. Neurocomputing, 2003, 55(1-2): 151-167.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 151-167
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 37
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • WANG Wenjian, XU Zongben, LU Weizhen, et al. Determination of the spread parameter in the Gaussian kernel for classification and regression[J]. Neurocomputing, 2003, 55(3-4): 643-663.
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 643-663
    • Wang, W.1    Xu, Z.2    Lu, W.3
  • 38
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • CHERKASSKY V, MA Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1): 113-126.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 39
    • 33744538355 scopus 로고    scopus 로고
    • Hybrid approach of selecting hyperparameters of support vector machine for regression
    • JENG J T. Hybrid approach of selecting hyperparameters of support vector machine for regression[J]. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, 2006, 36(3): 699-709.
    • (2006) IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics , vol.36 , Issue.3 , pp. 699-709
    • Jeng, J.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.