메뉴 건너뛰기




Volumn 55, Issue 1-2, 2003, Pages 151-167

SVM regression through variational methods and its sequential implementation

Author keywords

Bayesian inference; Bayesian variational algorithm; EM algorithm; Support vector machine

Indexed keywords

MATHEMATICAL MODELS; PARAMETER ESTIMATION; REGRESSION ANALYSIS;

EID: 0242383459     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(03)00365-5     Document Type: Article
Times cited : (27)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (6) (1974) 716-723.
    • (1974) IEEE Trans. Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0000308194 scopus 로고    scopus 로고
    • Gaussian processes for Bayesian classification via hybrid Monte Carlo
    • M. Mozer, M. Jordan, T. Petsche (Eds.), MIT Press, Cambridge, MA
    • D. Barber, C. Williams, Gaussian processes for Bayesian classification via hybrid Monte Carlo, in: M. Mozer, M. Jordan, T. Petsche (Eds.), Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 340-346.
    • (1997) Neural Information Processing Systems , vol.9 , pp. 340-346
    • Barber, D.1    Williams, C.2
  • 3
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • L. Todd, T.G. Dietterich, V. Tresp (Eds.), MIT Press, Cambridge, MA
    • G. Cauwenberghs, T. Poggio, Incremental and decremental support vector machine learning, in: L. Todd, T.G. Dietterich, V. Tresp (Eds.), Proceeding of NIPS, Vol. 13, MIT Press, Cambridge, MA, 2001.
    • (2001) Proceeding of NIPS , vol.13
    • Cauwenberghs, G.1    Poggio, T.2
  • 4
    • 0038891993 scopus 로고    scopus 로고
    • Sparse online Gaussian processes
    • L. Csató, M. Opper, Sparse online Gaussian processes, Neural Computation 14 (3) (2002) 641-668.
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 5
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, D. Rubin, Maximum-likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Set. B 39 (1977) 1-38.
    • (1977) J. Roy. Statist. Soc. Set. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 6
    • 0003798631 scopus 로고    scopus 로고
    • A unified framework for regularization networks and support vector machines
    • A.I. Memo 1654, AI Lab, MIT, MA
    • T. Evgeniou, M. Pontil, T. Poggio, A unified framework for regularization networks and support vector machines, A.I. Memo 1654, AI Lab, MIT, MA, 1999.
    • (1999)
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 7
    • 85030954947 scopus 로고    scopus 로고
    • Regression with input-dependent noise: A relevance vector machine treatment
    • Research report, ISIS Research Group, Department of Electronics and Computer Science, University of Southampton, May
    • J. Gao, S. Gunn, C. Harris, M. Brown, Regression with input-dependent noise: a relevance vector machine treatment, Research report, ISIS Research Group, Department of Electronics and Computer Science, University of Southampton, May 2000.
    • (2000)
    • Gao, J.1    Gunn, S.2    Harris, C.3    Brown, M.4
  • 8
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • J. Gao, S. Gunn, C. Harris, M. Brown, A probabilistic framework for SVM regression and error bar estimation, Machine Learn. 46 (2002) 71-89.
    • (2002) Machine Learn. , vol.46 , pp. 71-89
    • Gao, J.1    Gunn, S.2    Harris, C.3    Brown, M.4
  • 9
    • 0004101650 scopus 로고    scopus 로고
    • Variational Gaussian process classifiers
    • Technical report, Cavendish Laboratory, University of Cambridge, Manuscript
    • M. Gibbs, D. MayKay, Variational Gaussian process classifiers. Technical report, Cavendish Laboratory, University of Cambridge, Manuscript, 1997.
    • (1997)
    • Gibbs, M.1    MayKay, D.2
  • 10
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995) 219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 11
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Technical report, ISIS, Department of Electronics and Computer Science, University of Southampton
    • S. Gunn, Support vector machines for classification and regression, Technical report, ISIS, Department of Electronics and Computer Science, University of Southampton, 1998.
    • (1998)
    • Gunn, S.1
  • 12
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Machine Learn. 20 (3) (1995) 197-201.
    • (1995) Machine Learn. , vol.20 , Issue.3 , pp. 197-201
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 14
    • 0033330288 scopus 로고    scopus 로고
    • Variational probabilistic inference and the qmr-dt database
    • T. Jaakkola, M. Jordan, Variational probabilistic inference and the qmr-dt database, J. Artificial Intelligence Res. 10 (1999) 291-322.
    • (1999) J. Artificial Intelligence Res. , vol.10 , pp. 291-322
    • Jaakkola, T.1    Jordan, M.2
  • 15
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation through variational methods
    • T. Jaakkola, M. Jordan, Bayesian parameter estimation through variational methods, Statistics and Computing 10 (2000) 25-37.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.1    Jordan, M.2
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, A. Smola (Eds.), MIT Press, Cambridge, MA
    • T. Joachims, Making large-scale SVM learning practical, in: B. Schölkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 17
    • 85030958306 scopus 로고    scopus 로고
    • Support Vector Machines for classification in nonstandard situations
    • Technical Report 1016, Department of Statistics, University of Wisconsin, Madison, Wisconsin
    • Y. Li, Y. Lee, G. Wahba, Support Vector Machines for classification in nonstandard situations, Technical Report 1016, Department of Statistics, University of Wisconsin, Madison, Wisconsin, 2000.
    • (2000)
    • Li, Y.1    Lee, Y.2    Wahba, G.3
  • 18
    • 0037905968 scopus 로고    scopus 로고
    • Gaussian processes, A replacement for neural networks
    • NIPS tutorial 1997, Cambridge University
    • D. MacKay, Gaussian processes, A replacement for neural networks, NIPS tutorial 1997, Cambridge University, 1997.
    • (1997)
    • MacKay, D.1
  • 19
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for artificial neural network models
    • N. Murata, S. Yoshizawa, S. Amari, Network information criterion-determining the number of hidden units for artificial neural network models, IEEE Trans. Neural Networks 5 (1994) 865-872.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 20
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
    • Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto
    • R. Neal, Monte Carlo implementation of Gaussian process models for Bayesian regression and classification, Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto, 1997.
    • (1997)
    • Neal, R.1
  • 21
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean field algorithms
    • M. Opper, O. Winther, Gaussian processes for classification: mean field algorithms, Neural Computation 12 (2000) 2655-2684.
    • (2000) Neural Computation , vol.12 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 22
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines
    • J. Principe, L. Gile, N. Morgan, E. Wilson (Eds.), Neural Networks for Signal Processing VII -Proceedings of the 1997 IEEE Workshop, IEEE, New York
    • E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: J. Principe, L. Gile, N. Morgan, E. Wilson (Eds.), Neural Networks for Signal Processing VII -Proceedings of the 1997 IEEE Workshop, IEEE, New York, 1997, pp. 276-285.
    • (1997) , pp. 276-285
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 23
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, A. Smola (Eds.), MIT Press, Cambridge, MA
    • J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schölkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 24
    • 0008197560 scopus 로고    scopus 로고
    • On the noise model of support vector machine regression
    • A.I. Memo 1651, AI Laboratory, MIT
    • M. Pontil, S. Mukherjee, F. Girosi, On the noise model of support vector machine regression, A.I. Memo 1651, AI Laboratory, MIT, 1998.
    • (1998)
    • Pontil, M.1    Mukherjee, S.2    Girosi, F.3
  • 25
    • 0021404166 scopus 로고
    • Mixture densities, miximum likelihood and the EM algorithm
    • R. Redner, H. Walker, Mixture densities, miximum likelihood and the EM algorithm, SIAM Rev. 26 (2) (1984) 195-235.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-235
    • Redner, R.1    Walker, H.2
  • 26
    • 0004094721 scopus 로고    scopus 로고
    • Learning with Kernels
    • Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany
    • A. Smola, Learning with Kernels, Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany, 1998.
    • (1998)
    • Smola, A.1
  • 27
    • 0033355869 scopus 로고    scopus 로고
    • Approximate learning curves for Gaussian processes
    • ICANN99: Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers
    • P. Sollich, Approximate learning curves for Gaussian processes, in: ICANN99: Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers, 1999, pp. 437-442.
    • (1999) , pp. 437-442
    • Sollich, P.1
  • 28
    • 0033327850 scopus 로고    scopus 로고
    • Probabilistic interpretations and Bayesian methods for support vector machines
    • CANN99 - Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers
    • P. Sollich, Probabilistic interpretations and Bayesian methods for support vector machines, in: CANN99 - Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers, 1999, pp. 91-96.
    • (1999) , pp. 91-96
    • Sollich, P.1
  • 29
    • 0003664883 scopus 로고
    • Solution of I11-posed Problems
    • W.H. Winston, Washington, DC
    • A. Tikhonov, V. Arsenin, Solution of I11-posed Problems, W.H. Winston, Washington, DC, 1977.
    • (1977)
    • Tikhonov, A.1    Arsenin, V.2
  • 30
    • 0003551703 scopus 로고
    • LOGO: An interior point code for quadratic programming
    • TR SOR-94-15, Statistics and Operations Research, Princeton University, NJ
    • R. Vanderbei, LOGO: an interior point code for quadratic programming, TR SOR-94-15, Statistics and Operations Research, Princeton University, NJ, 1994.
    • (1994)
    • Vanderbei, R.1
  • 33
    • 0003241883 scopus 로고
    • Splines Models for Observational Data
    • SIAM Press, Philadelphia
    • G. Wahba, Splines Models for Observational Data, in: Series in Applied Mathematics, Vol. 59, SIAM Press, Philadelphia, 1990.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 34
    • 84898974226 scopus 로고    scopus 로고
    • Computing with infinite networks
    • M. Mozer, M. Jordan, T. Petsche (Eds.), MIT Press, Cambridge, MA
    • C. Williams, Computing with infinite networks, in: M. Mozer, M. Jordan, T. Petsche (Eds.), Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 295-301.
    • (1997) Neural Information Processing Systems , vol.9 , pp. 295-301
    • Williams, C.1
  • 35
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. Jordan (Ed.), MIT Press, Cambridge, MA
    • C. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond, in: M. Jordan (Ed.), Learning in Graphical Models, MIT Press, Cambridge, MA, 1998, pp. 599-621.
    • (1998) Learning in Graphical Models , pp. 599-621
    • Williams, C.1
  • 37
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. Touretzky, M. Mozer, M. Hasselmo (Eds.), MIT Press, Cambridge, MA
    • C. Williams, C. Rasmuseen, Gaussian processes for regression, in: D. Touretzky, M. Mozer, M. Hasselmo (Eds.), Neural Information Processing Systems, Vol. 8, MIT Press, Cambridge, MA, 1997, pp. 514-520.
    • (1997) Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.1    Rasmuseen, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.