-
1
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (6) (1974) 716-723.
-
(1974)
IEEE Trans. Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
2
-
-
0000308194
-
Gaussian processes for Bayesian classification via hybrid Monte Carlo
-
M. Mozer, M. Jordan, T. Petsche (Eds.), MIT Press, Cambridge, MA
-
D. Barber, C. Williams, Gaussian processes for Bayesian classification via hybrid Monte Carlo, in: M. Mozer, M. Jordan, T. Petsche (Eds.), Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 340-346.
-
(1997)
Neural Information Processing Systems
, vol.9
, pp. 340-346
-
-
Barber, D.1
Williams, C.2
-
3
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
L. Todd, T.G. Dietterich, V. Tresp (Eds.), MIT Press, Cambridge, MA
-
G. Cauwenberghs, T. Poggio, Incremental and decremental support vector machine learning, in: L. Todd, T.G. Dietterich, V. Tresp (Eds.), Proceeding of NIPS, Vol. 13, MIT Press, Cambridge, MA, 2001.
-
(2001)
Proceeding of NIPS
, vol.13
-
-
Cauwenberghs, G.1
Poggio, T.2
-
4
-
-
0038891993
-
Sparse online Gaussian processes
-
L. Csató, M. Opper, Sparse online Gaussian processes, Neural Computation 14 (3) (2002) 641-668.
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
6
-
-
0003798631
-
A unified framework for regularization networks and support vector machines
-
A.I. Memo 1654, AI Lab, MIT, MA
-
T. Evgeniou, M. Pontil, T. Poggio, A unified framework for regularization networks and support vector machines, A.I. Memo 1654, AI Lab, MIT, MA, 1999.
-
(1999)
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
7
-
-
85030954947
-
Regression with input-dependent noise: A relevance vector machine treatment
-
Research report, ISIS Research Group, Department of Electronics and Computer Science, University of Southampton, May
-
J. Gao, S. Gunn, C. Harris, M. Brown, Regression with input-dependent noise: a relevance vector machine treatment, Research report, ISIS Research Group, Department of Electronics and Computer Science, University of Southampton, May 2000.
-
(2000)
-
-
Gao, J.1
Gunn, S.2
Harris, C.3
Brown, M.4
-
8
-
-
0036161010
-
A probabilistic framework for SVM regression and error bar estimation
-
J. Gao, S. Gunn, C. Harris, M. Brown, A probabilistic framework for SVM regression and error bar estimation, Machine Learn. 46 (2002) 71-89.
-
(2002)
Machine Learn.
, vol.46
, pp. 71-89
-
-
Gao, J.1
Gunn, S.2
Harris, C.3
Brown, M.4
-
9
-
-
0004101650
-
Variational Gaussian process classifiers
-
Technical report, Cavendish Laboratory, University of Cambridge, Manuscript
-
M. Gibbs, D. MayKay, Variational Gaussian process classifiers. Technical report, Cavendish Laboratory, University of Cambridge, Manuscript, 1997.
-
(1997)
-
-
Gibbs, M.1
MayKay, D.2
-
10
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995) 219-269.
-
(1995)
Neural Comput.
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
11
-
-
0003425664
-
Support vector machines for classification and regression
-
Technical report, ISIS, Department of Electronics and Computer Science, University of Southampton
-
S. Gunn, Support vector machines for classification and regression, Technical report, ISIS, Department of Electronics and Computer Science, University of Southampton, 1998.
-
(1998)
-
-
Gunn, S.1
-
12
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Machine Learn. 20 (3) (1995) 197-201.
-
(1995)
Machine Learn.
, vol.20
, Issue.3
, pp. 197-201
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
14
-
-
0033330288
-
Variational probabilistic inference and the qmr-dt database
-
T. Jaakkola, M. Jordan, Variational probabilistic inference and the qmr-dt database, J. Artificial Intelligence Res. 10 (1999) 291-322.
-
(1999)
J. Artificial Intelligence Res.
, vol.10
, pp. 291-322
-
-
Jaakkola, T.1
Jordan, M.2
-
15
-
-
0042685161
-
Bayesian parameter estimation through variational methods
-
T. Jaakkola, M. Jordan, Bayesian parameter estimation through variational methods, Statistics and Computing 10 (2000) 25-37.
-
(2000)
Statistics and Computing
, vol.10
, pp. 25-37
-
-
Jaakkola, T.1
Jordan, M.2
-
16
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, A. Smola (Eds.), MIT Press, Cambridge, MA
-
T. Joachims, Making large-scale SVM learning practical, in: B. Schölkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, 1999, pp. 169-184.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
17
-
-
85030958306
-
Support Vector Machines for classification in nonstandard situations
-
Technical Report 1016, Department of Statistics, University of Wisconsin, Madison, Wisconsin
-
Y. Li, Y. Lee, G. Wahba, Support Vector Machines for classification in nonstandard situations, Technical Report 1016, Department of Statistics, University of Wisconsin, Madison, Wisconsin, 2000.
-
(2000)
-
-
Li, Y.1
Lee, Y.2
Wahba, G.3
-
18
-
-
0037905968
-
Gaussian processes, A replacement for neural networks
-
NIPS tutorial 1997, Cambridge University
-
D. MacKay, Gaussian processes, A replacement for neural networks, NIPS tutorial 1997, Cambridge University, 1997.
-
(1997)
-
-
MacKay, D.1
-
19
-
-
0028544395
-
Network information criterion-determining the number of hidden units for artificial neural network models
-
N. Murata, S. Yoshizawa, S. Amari, Network information criterion-determining the number of hidden units for artificial neural network models, IEEE Trans. Neural Networks 5 (1994) 865-872.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
20
-
-
0004220749
-
Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
-
Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto
-
R. Neal, Monte Carlo implementation of Gaussian process models for Bayesian regression and classification, Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto, 1997.
-
(1997)
-
-
Neal, R.1
-
21
-
-
0034320350
-
Gaussian processes for classification: Mean field algorithms
-
M. Opper, O. Winther, Gaussian processes for classification: mean field algorithms, Neural Computation 12 (2000) 2655-2684.
-
(2000)
Neural Computation
, vol.12
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
22
-
-
0031334889
-
An improved training algorithm for support vector machines
-
J. Principe, L. Gile, N. Morgan, E. Wilson (Eds.), Neural Networks for Signal Processing VII -Proceedings of the 1997 IEEE Workshop, IEEE, New York
-
E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: J. Principe, L. Gile, N. Morgan, E. Wilson (Eds.), Neural Networks for Signal Processing VII -Proceedings of the 1997 IEEE Workshop, IEEE, New York, 1997, pp. 276-285.
-
(1997)
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
23
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, A. Smola (Eds.), MIT Press, Cambridge, MA
-
J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schölkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
24
-
-
0008197560
-
On the noise model of support vector machine regression
-
A.I. Memo 1651, AI Laboratory, MIT
-
M. Pontil, S. Mukherjee, F. Girosi, On the noise model of support vector machine regression, A.I. Memo 1651, AI Laboratory, MIT, 1998.
-
(1998)
-
-
Pontil, M.1
Mukherjee, S.2
Girosi, F.3
-
25
-
-
0021404166
-
Mixture densities, miximum likelihood and the EM algorithm
-
R. Redner, H. Walker, Mixture densities, miximum likelihood and the EM algorithm, SIAM Rev. 26 (2) (1984) 195-235.
-
(1984)
SIAM Rev.
, vol.26
, Issue.2
, pp. 195-235
-
-
Redner, R.1
Walker, H.2
-
26
-
-
0004094721
-
Learning with Kernels
-
Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany
-
A. Smola, Learning with Kernels, Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany, 1998.
-
(1998)
-
-
Smola, A.1
-
27
-
-
0033355869
-
Approximate learning curves for Gaussian processes
-
ICANN99: Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers
-
P. Sollich, Approximate learning curves for Gaussian processes, in: ICANN99: Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers, 1999, pp. 437-442.
-
(1999)
, pp. 437-442
-
-
Sollich, P.1
-
28
-
-
0033327850
-
Probabilistic interpretations and Bayesian methods for support vector machines
-
CANN99 - Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers
-
P. Sollich, Probabilistic interpretations and Bayesian methods for support vector machines, in: CANN99 - Ninth International Conference on Artificial Neural Networks, London, The Institution of Electrical Engineers, 1999, pp. 91-96.
-
(1999)
, pp. 91-96
-
-
Sollich, P.1
-
29
-
-
0003664883
-
Solution of I11-posed Problems
-
W.H. Winston, Washington, DC
-
A. Tikhonov, V. Arsenin, Solution of I11-posed Problems, W.H. Winston, Washington, DC, 1977.
-
(1977)
-
-
Tikhonov, A.1
Arsenin, V.2
-
30
-
-
0003551703
-
LOGO: An interior point code for quadratic programming
-
TR SOR-94-15, Statistics and Operations Research, Princeton University, NJ
-
R. Vanderbei, LOGO: an interior point code for quadratic programming, TR SOR-94-15, Statistics and Operations Research, Princeton University, NJ, 1994.
-
(1994)
-
-
Vanderbei, R.1
-
33
-
-
0003241883
-
Splines Models for Observational Data
-
SIAM Press, Philadelphia
-
G. Wahba, Splines Models for Observational Data, in: Series in Applied Mathematics, Vol. 59, SIAM Press, Philadelphia, 1990.
-
(1990)
Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
34
-
-
84898974226
-
Computing with infinite networks
-
M. Mozer, M. Jordan, T. Petsche (Eds.), MIT Press, Cambridge, MA
-
C. Williams, Computing with infinite networks, in: M. Mozer, M. Jordan, T. Petsche (Eds.), Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 295-301.
-
(1997)
Neural Information Processing Systems
, vol.9
, pp. 295-301
-
-
Williams, C.1
-
35
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. Jordan (Ed.), MIT Press, Cambridge, MA
-
C. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond, in: M. Jordan (Ed.), Learning in Graphical Models, MIT Press, Cambridge, MA, 1998, pp. 599-621.
-
(1998)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.1
-
37
-
-
0002295913
-
Gaussian processes for regression
-
D. Touretzky, M. Mozer, M. Hasselmo (Eds.), MIT Press, Cambridge, MA
-
C. Williams, C. Rasmuseen, Gaussian processes for regression, in: D. Touretzky, M. Mozer, M. Hasselmo (Eds.), Neural Information Processing Systems, Vol. 8, MIT Press, Cambridge, MA, 1997, pp. 514-520.
-
(1997)
Neural Information Processing Systems
, vol.8
, pp. 514-520
-
-
Williams, C.1
Rasmuseen, C.2
|