메뉴 건너뛰기




Volumn 64, Issue 1-4 SPEC. ISS., 2005, Pages 161-181

Fast bootstrap methodology for regression model selection

Author keywords

Bootstrap; Model selection; Nonlinear modeling; Resampling

Indexed keywords

COMPUTATIONAL COMPLEXITY; ERROR DETECTION; LEAST SQUARES APPROXIMATIONS; POLYNOMIALS; REGRESSION ANALYSIS;

EID: 15844392541     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.11.017     Document Type: Article
Times cited : (15)

References (21)
  • 2
    • 0034140341 scopus 로고    scopus 로고
    • Evaluating the generalization ability of support vector machines through the bootstrap
    • D. Anguita A. Boni S. Ridella Evaluating the generalization ability of support vector machines through the bootstrap Neural Process Lett 11 1 2000 51-58
    • (2000) Neural Process. Lett. , vol.11 , Issue.1 , pp. 51-58
    • Anguita, D.1    Boni, A.2    Ridella, S.3
  • 3
    • 0345328110 scopus 로고    scopus 로고
    • On the kernel widths in radial-basis function networks
    • N. Benoudjit M. Verleysen On the kernel widths in radial-basis function networks Neural Process. Lett. 18 2 2003 139-154
    • (2003) Neural Process. Lett. , vol.18 , Issue.2 , pp. 139-154
    • Benoudjit, N.1    Verleysen, M.2
  • 6
    • 0004296209 scopus 로고    scopus 로고
    • third ed. Englewood Cliffs, NJ: Prentice-Hall
    • W.H. Greene Econometric Analysis third ed. 1997 Prentice-Hall Englewood Cliffs, NJ
    • (1997) Econometric Analysis
    • Greene, W.H.1
  • 8
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montréal
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proceedings of the 14th International Joint Conference on A.I., Montréal, 1995 2; pp. 1137-1143.
    • (1995) Proceedings of the 14th International Joint Conference on A.I. , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 10
    • 21144438694 scopus 로고    scopus 로고
    • Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models
    • O. Kaynak E. Alpaydin E. Oja L. Xu (Eds.) Artificial Neural Networks and Neural Information Processing-ICANN/ICONIP 2003
    • A. Lendasse V. Wertz M. Verleysen Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models in: O. Kaynak E. Alpaydin E. Oja L. Xu (Eds.) Artificial Neural Networks and Neural Information Processing-ICANN/ICONIP 2003 2003 Springer-Verlag Lecture Notes in Computer Science 2714 Berlin 573-580
    • (2003) Springer-Verlag Berlin Lecture Notes in Computer Science , vol.2714 , pp. 573-580
    • Lendasse, A.1    Wertz, V.2    Verleysen, M.3
  • 12
    • 0000902690 scopus 로고
    • The effective Number of Parameters: An analysis of generalization and regularization in nonlinear learning systems
    • J.E. Moody The effective Number of Parameters: An analysis of generalization and regularization in nonlinear learning systems Adv. Neural Inform. Process. Systems 1992 847-854
    • (1992) Adv. Neural Inform. Process. Systems , pp. 847-854
    • Moody, J.E.1
  • 13
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio F. Girosi Networks for approximation and learning Proc. IEEE 78 9 1990 1481-1497
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 16
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • M. Stone An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion J. Roy. Statist. Soc. B 39 1977 44-47
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 44-47
    • Stone, M.1
  • 20
    • 0032634974 scopus 로고    scopus 로고
    • Training multilayer perceptron classifiers based on modified support vector method
    • J.A.K. Suykens J. Vandewalle Training multilayer perceptron classifiers based on modified support vector method IEEE Trans. Neural Networks, 10 4 1999 907-911
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.4 , pp. 907-911
    • Suykens, J.A.K.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.