메뉴 건너뛰기




Volumn 5, Issue 4, 2006, Pages 447-473

A comparative investigation on model selection in independent factor analysis

Author keywords

Automatic model selection; Binary factor analysis; BYY harmony learning; Hidden factor; Model selection; Non Gaussian factor analysis

Indexed keywords


EID: 33748528133     PISSN: 15701166     EISSN: 15729214     Source Type: Journal    
DOI: 10.1007/s10852-005-9021-2     Document Type: Article
Times cited : (5)

References (38)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike, H.: A new look at statistical model identification, IEEE Trans. Automat. Contr. 19 (1974), 716-723.
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H.: Factor analysis and AIC, Psychometrika 52(3) (1987), 317-332.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 317-332
    • Akaike, H.1
  • 4
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H.: Independent factor analysis, Neur. Comput. 11 (1999), 803-851.
    • (1999) Neur. Comput. , vol.11 , pp. 803-851
    • Attias, H.1
  • 5
    • 0141700582 scopus 로고    scopus 로고
    • Latent variable models and factor analysis
    • Oxford University Press, New York
    • Bartholomew, D. J. and Knott, M.: Latent variable models and factor analysis, Kendall's Library of Satistics, Vol. 7, Oxford University Press, New York, 1999.
    • (1999) Kendall's Library of Satistics , vol.7
    • Bartholomew, D.J.1    Knott, M.2
  • 6
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron, A. and Rissanen, J.: The minimum description length principle in coding and modeling, IEEE Trans. Inf. Theory 44 (1998), 2743-2760.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2
  • 7
    • 0002543590 scopus 로고
    • Maximum likelihood source separation by the expectation-maximization technique: Deterministic and stochastic implementation
    • Belouchrani, A. and Cardoso, J.: Maximum likelihood source separation by the expectation-maximization technique: deterministic and stochastic implementation, Proc. NOLTA95 (1995), 49-53.
    • (1995) Proc. NOLTA95 , pp. 49-53
    • Belouchrani, A.1    Cardoso, J.2
  • 9
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and sigular value decomposition
    • Bourlard, H. and Kamp, Y.: Auto-association by multilayer perceptrons and sigular value decomposition, Biol. Cybern. 59 (1988), 291-294.
    • (1988) Biol. Cybern. , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 10
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions
    • Bozdogan, H.: Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions, Psychometrika 52(3) (1987), 345-370.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 11
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • Cattell, R.: The scree test for the number of factors, Multivariate Behav. Res. 1 (1966), 245-276.
    • (1966) Multivariate Behav. Res. , vol.1 , pp. 245-276
    • Cattell, R.1
  • 13
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan, P. and Zemel, R. S.: Competition and multiple cause models, Neural. Comput. 7 (1995), 565-579.
    • (1995) Neural. Comput. , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 15
    • 0344505705 scopus 로고    scopus 로고
    • Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood
    • Hyvarinen, A.: Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood, Neurocomputing 22 (1998), 49-67.
    • (1998) Neurocomputing , vol.22 , pp. 49-67
    • Hyvarinen, A.1
  • 17
    • 34250493668 scopus 로고
    • A second generation little jiffy
    • Kaiser, H.: A second generation little jiffy, Psychometrika 35 (1970), 401-415.
    • (1970) Psychometrika , vol.35 , pp. 401-415
    • Kaiser, H.1
  • 18
    • 3142756981 scopus 로고    scopus 로고
    • Investigations on non-Gaussian factor analysis
    • Liu, Z. Y., Chiu, K. C. and Xu, L.: Investigations on non-Gaussian factor analysis, IEEE Signal Process. Lett. 11(7) (2004), 597-600.
    • (2004) IEEE Signal Process. Lett. , vol.11 , Issue.7 , pp. 597-600
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 19
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Moulines, E., Cardoso, J. and Gassiat, E.: Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models, Proc. ICASSP97 (1997), 3617-3620.
    • (1997) Proc. ICASSP97 , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.2    Gassiat, E.3
  • 20
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J.; Modeling by shortest data description, Automatica 14 (1978), 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 21
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D. and Thayer, D.: EM algorithms for ML factor analysis, Psychometrika 47(1) (1982), 69-76.
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 22
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • Saund, E.: A multiple cause mixture model for unsupervised learning, Neural Comput. 7 (1995), 51-71.
    • (1995) Neural Comput. , vol.7 , pp. 51-71
    • Saund, E.1
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model, Ann. Stat. 6(2) (1978), 461-464.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 25
    • 0000629975 scopus 로고
    • Use of cross-validation for the choice and assessment of a prediction function
    • Stone, M.: Use of cross-validation for the choice and assessment of a prediction function, Journal R. Stat. Soc., B 36 (1974), 111-147.
    • (1974) Journal R. Stat. Soc., B , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 0027206958 scopus 로고
    • Least mean square error reconstruction for self-organizing neural-nets
    • Xu, L.: Least mean square error reconstruction for self-organizing neural-nets, Neural Netw. 6 (1993), 627-648.
    • (1993) Neural Netw. , vol.6 , pp. 627-648
    • Xu, L.1
  • 28
    • 33748559723 scopus 로고
    • Its early version on
    • Its early version on Proc. IJCNN91' Singapore (1991), 2363-2373.
    • (1991) Proc. IJCNN91' Singapore , pp. 2363-2373
  • 29
    • 0005906827 scopus 로고
    • Bayesian-Kullback coupled Ying-Yang machines: Unified learnings and new results on vector quantization
    • Beijing, China
    • Xu, L.: Bayesian-Kullback coupled Ying-Yang machines: Unified learnings and new results on vector quantization, Proc. Intl. Conf. on Neural Information Processing (ICONIP95), Beijing, China, 1995, pp. 977-988.
    • (1995) Proc. Intl. Conf. on Neural Information Processing (ICONIP95) , pp. 977-988
    • Xu, L.1
  • 30
    • 0012671071 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach (III): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning
    • K. M. Wong, et al. (eds): Springer
    • Xu, L.: Bayesian Ying-Yang system and theory as a unified statistical learning approach (III): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning, in K. M. Wong, et al. (eds): Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective, Springer, 1997, pp. 43-60.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 43-60
    • Xu, L.1
  • 31
    • 0032213587 scopus 로고    scopus 로고
    • Bayesian Kullback Ying-Yang dependence reduction theory
    • Xu, L.: Bayesian Kullback Ying-Yang dependence reduction theory, Neurocomputing, 22 (1-3) (1998), 81-112.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 81-112
    • Xu, L.1
  • 32
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model and blind source separation
    • Xu, L.: Temporal BYY learning for state space approach, hidden Markov model and blind source separation, IEEE Trans Signal Process. 48 (2000), 2132-2144.
    • (2000) IEEE Trans Signal Process. , vol.48 , pp. 2132-2144
    • Xu, L.1
  • 33
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space, and generalized APT financial analyses
    • Xu, L.: BYY harmony learning, independent state space, and generalized APT financial analyses, IEEE Trans. Neural Netw. 12(4) (2001), 822-849.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 34
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
    • Xu, L.: BYY harmony learning, structural RPCL, and topological self-organizing on mixture models, Neural Netw. 15 (2002), 1125-1151.
    • (2002) Neural Netw. , vol.15 , pp. 1125-1151
    • Xu, L.1
  • 35
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
    • Xu, L.: Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective, Neural Inf. Process. Lett. Rev. 1(1) (2003), 1-52.
    • (2003) Neural Inf. Process. Lett. Rev. , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 36
    • 0037380850 scopus 로고    scopus 로고
    • BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
    • Xu, L.: BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units, Neurocomputing 51 (2003), 277-301.
    • (2003) Neurocomputing , vol.51 , pp. 277-301
    • Xu, L.1
  • 37
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor autodetermination
    • Xu, L.: Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor autodetermination, IEEE Trans. Neural Netw. 15(4) (2004), 885-902.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.4 , pp. 885-902
    • Xu, L.1
  • 38
    • 0010727733 scopus 로고    scopus 로고
    • Signal source separation by mixtures: Accumulative distribution functions or mixture of bell-shape density distribution functions
    • April
    • Xu, L., Yang, H. H. and Amari, S. I.: Signal source separation by mixtures: accumulative distribution functions or mixture of bell-shape density distribution functions. Presentation at FRONTIER FORUM. Japan: Institute of Physical and Chemical Research, April, 1996.
    • (1996) FRONTIER FORUM. Japan: Institute of Physical and Chemical Research
    • Xu, L.1    Yang, H.H.2    Amari, S.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.