메뉴 건너뛰기




Volumn 155, Issue , 2008, Pages 209-232

Bayesian Ying-Yang harmony learning for local factor analysis: A comparative investigation

Author keywords

Automatic model selection; Bayesian Ying Yang harmony learning; Data smoothing; Incremental methods; Local Factor Analysis; Model selection; Small sample size; Two phase implementation

Indexed keywords


EID: 51749109145     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-70829-2_10     Document Type: Article
Times cited : (4)

References (38)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automatic Control 19(6), 716-723 (1974)
    • (1974) IEEE Trans. Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0032183995 scopus 로고    scopus 로고
    • The Minimum Description Length Principle in Coding and Modeling
    • Barron, A.R., Rissanen, J., Yu, B.: The Minimum Description Length Principle in Coding and Modeling. IEEE Trans. Infor. Thr. 44(6), 2743-2760 (1998)
    • (1998) IEEE Trans. Infor. Thr , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.R.1    Rissanen, J.2    Yu, B.3
  • 3
    • 84925604888 scopus 로고    scopus 로고
    • No Unbiased Estimator of the Variance of K-Fold Cross-Validation
    • Bengio, Y., Grandvalet, Y.: No Unbiased Estimator of the Variance of K-Fold Cross-Validation. JMLR 5, 1089-1105 (2004)
    • (2004) JMLR , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 4
    • 0003813740 scopus 로고    scopus 로고
    • Applied Smoothing Techniques for Data Analysis
    • Oxford Science Publications
    • Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford Statistical Science Series. Oxford Science Publications (1997)
    • (1997) Oxford Statistical Science Series
    • Bowman, A.W.1    Azzalini, A.2
  • 5
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions
    • Bozdogan, H.: Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345-370 (1987)
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 6
    • 0002996131 scopus 로고    scopus 로고
    • Akaike's Information Criterion and Recent Developments in Information Complexity
    • Bozdogan, H.: Akaike's Information Criterion and Recent Developments in Information Complexity. J. Math. Psychol. 44(1), 62-91 (2000)
    • (2000) J. Math. Psychol , vol.44 , Issue.1 , pp. 62-91
    • Bozdogan, H.1
  • 9
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised Learning of Finite Mixture Models
    • Figueiredo, M.A.F., Jain, A.K.: Unsupervised Learning of Finite Mixture Models. IEEE Trans. PAMI 24(3), 381-396 (2002)
    • (2002) IEEE Trans. PAMI , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.A.F.1    Jain, A.K.2
  • 10
    • 84898934543 scopus 로고    scopus 로고
    • Variational Inference for BayesianMixtures of Factor Analysers
    • Ghahramani, Z., Beal,M.J.: Variational Inference for BayesianMixtures of Factor Analysers. In: NIPS, pp. 449-455 (1999)
    • (1999) NIPS , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 11
    • 85153963785 scopus 로고
    • Recognizing Handwritten Digits Using Mixtures of Linear Models
    • Hinton, G.E., Revow, M., Dayan, P.: Recognizing Handwritten Digits Using Mixtures of Linear Models. In: NIPS, pp. 1015-1022 (1994)
    • (1994) NIPS , pp. 1015-1022
    • Hinton, G.E.1    Revow, M.2    Dayan, P.3
  • 13
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and mode
    • Parzen, E.: On the estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065-1076 (1962)
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 14
    • 0021404166 scopus 로고
    • Mixture Densities, Maximum Likelihood and the EM Algorithm
    • Redner, R., Walker, H.: Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review 26(2), 195-239 (1984)
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.1    Walker, H.2
  • 16
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D., Thayer, D.: EM algorithms for ML factor analysis. Psychometrika 47(1), 69-76 (1982)
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 17
    • 10044252969 scopus 로고    scopus 로고
    • Incremental Mixtures of Factor Analysers
    • Salah, A.A., Alpaydin, E.: Incremental Mixtures of Factor Analysers. In: Proc. ICPR, vol. 1, pp. 276-279 (2004)
    • (2004) Proc. ICPR , vol.1 , pp. 276-279
    • Salah, A.A.1    Alpaydin, E.2
  • 18
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461-464 (1978)
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 19
    • 0017336301 scopus 로고
    • Asymptotics For and Against Cross-Validation
    • Stone, M.: Asymptotics For and Against Cross-Validation. Biometrika 64(1), 29-35 (1977)
    • (1977) Biometrika , vol.64 , Issue.1 , pp. 29-35
    • Stone, M.1
  • 22
    • 33749253228 scopus 로고
    • On structural risk minimization or overall risk in a problem of pattern recognition
    • Vapnik, V., Sterin, A.: On structural risk minimization or overall risk in a problem of pattern recognition. Automation and Remote Control 10(3), 1495-1503 (1977)
    • (1977) Automation and Remote Control , vol.10 , Issue.3 , pp. 1495-1503
    • Vapnik, V.1    Sterin, A.2
  • 24
    • 28444443032 scopus 로고    scopus 로고
    • Learning Gaussian mixture models by structural risk minimization
    • Guangzhou, China
    • Wang, L., Feng, J.: Learning Gaussian mixture models by structural risk minimization. In: Proc. Intnl. Conf. on Machine Learning and Cybernetics 2005, Guangzhou, China, vol. 8, pp. 4858-4863 (2005)
    • (2005) Proc. Intnl. Conf. on Machine Learning and Cybernetics , vol.8 , pp. 4858-4863
    • Wang, L.1    Feng, J.2
  • 25
    • 46049106446 scopus 로고
    • Bayesian Ying Yang Learning
    • Xu, L.: Bayesian Ying Yang Learning. In: Scholarpedia, vol. 2(3) (1809), http://scholarpedia.org/article/Bayesian_Ying_Yang_Learning
    • (1809) Scholarpedia , vol.2 , Issue.3
    • Xu, L.1
  • 26
    • 0005906827 scopus 로고
    • Bayesian-Kullback coupled Ying-Yang machines: Unified learnings and new results on vector quantization
    • Beijing, China, pp
    • Xu, L.: Bayesian-Kullback coupled Ying-Yang machines: Unified learnings and new results on vector quantization. In: Proc. of ICONIP 1995, Beijing, China, pp. 977-988 (1995)
    • (1995) Proc. of ICONIP , pp. 977-988
    • Xu, L.1
  • 27
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach (II) From unsupervised learning to supervised learning and temporal modeling
    • Wong, K.W, King, I, Leung, D, eds, Springer, Berlin
    • Xu, L.: Bayesian Ying-Yang system and theory as a unified statistical learning approach (II) From unsupervised learning to supervised learning and temporal modeling. In: Wong, K.W., King, I., Leung, D. (eds.) Theoretical aspects of neural computation: A multidisciplinary perspective, pp. 25-42. Springer, Berlin (1997)
    • (1997) Theoretical aspects of neural computation: A multidisciplinary perspective , pp. 25-42
    • Xu, L.1
  • 28
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian Ying-Yang learning
    • Xu, L.: RBF nets, mixture experts, and Bayesian Ying-Yang learning. Neurocomputing 19(1-3), 223-257 (1998)
    • (1998) Neurocomputing , vol.19 , Issue.1-3 , pp. 223-257
    • Xu, L.1
  • 29
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets
    • Xu, L.: Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets. International Journal of Neural Systems 11(1), 3-69 (2001)
    • (2001) International Journal of Neural Systems , vol.11 , Issue.1 , pp. 3-69
    • Xu, L.1
  • 30
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space, and generalized APT financial analyses
    • Xu, L.: BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Trans. Neural Networks 12, 822-849 (2001)
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 822-849
    • Xu, L.1
  • 31
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
    • Xu, L.: BYY harmony learning, structural RPCL, and topological self-organizing on mixture models. Neural Networks 15(8-9), 1125-1151 (2002)
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1125-1151
    • Xu, L.1
  • 32
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularization, multi-sets-learning, and problem solving strategies
    • Xu, L.: Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks 16(5-6), 817-825 (2003)
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 33
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmIny learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
    • Xu, L.: Advances on BYY harmIny learning: information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Trans. Neural Networks 15(5), 885-902 (2004)
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.5 , pp. 885-902
    • Xu, L.1
  • 34
    • 3843056324 scopus 로고    scopus 로고
    • Bayesian Ying-Yang Learning(I): A unified perspective for statistical modeling
    • Zhong, N, Liu, J, eds, Springer, Heidelberg
    • Xu, L.: Bayesian Ying-Yang Learning(I): A unified perspective for statistical modeling. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 615-659. Springer, Heidelberg (2004)
    • (2004) Intelligent Technologies for Information Analysis , pp. 615-659
    • Xu, L.1
  • 35
    • 24344441147 scopus 로고    scopus 로고
    • Bayesian Ying-Yang Learning(II): A new mechanism for model selection and regularization
    • Zhong, N, Liu, J, eds, Springer, Heidelberg
    • Xu, L.: Bayesian Ying-Yang Learning(II): A new mechanism for model selection and regularization. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 661-706. Springer, Heidelberg (2004)
    • (2004) Intelligent Technologies for Information Analysis , pp. 661-706
    • Xu, L.1
  • 36
    • 33847155556 scopus 로고    scopus 로고
    • Fundamentals, Challenges, and Advances of Statistical Learning for Knowledge Discovery and Problem Solving: A BYY Harmony Perspective
    • Beijing, China, pp
    • Xu, L.: Fundamentals, Challenges, and Advances of Statistical Learning for Knowledge Discovery and Problem Solving: A BYY Harmony Perspective. In: Proc. of Int. Conf. on Neural Networks and Brain, Beijing, China, pp. 24-55 (2005)
    • (2005) Proc. of Int. Conf. on Neural Networks and Brain , pp. 24-55
    • Xu, L.1
  • 37
    • 34249982553 scopus 로고    scopus 로고
    • Trends on Regularization and Model Selection in Statistical Learning: A Perspective from Bayesian Ying Yang Learning
    • Duch, W, Mandziuk, J, Zurada, J.M, eds, Springer, Heidelberg
    • Xu, L.: Trends on Regularization and Model Selection in Statistical Learning: A Perspective from Bayesian Ying Yang Learning. In: Duch, W., Mandziuk, J., Zurada, J.M. (eds.) Studies in Computational Intelligence, pp. 365-406. Springer, Heidelberg (2007)
    • (2007) Studies in Computational Intelligence , pp. 365-406
    • Xu, L.1
  • 38
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu, L.: A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2129-2153 (2007)
    • (2007) Pattern Recognition , vol.2129-2153
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.