메뉴 건너뛰기




Volumn 63, Issue , 2007, Pages 365-406

A trend on regularization and model selection in statistical learning: A bayesian ying yang learning perspective

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34249982553     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-71984-7_14     Document Type: Article
Times cited : (11)

References (71)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H (1974), "A new look at the statistical model identification", IEEE Tr. Automatic Control, 19, 714-723.
    • (1974) IEEE Tr. Automatic Control , vol.19 , pp. 714-723
    • Akaike, H.1
  • 2
    • 21144438166 scopus 로고
    • Likelihood of a model and information criteria
    • Akaike, H (1981), "Likelihood of a model and information criteria", Journal of Econometrics, 16, 3-14.
    • (1981) Journal of Econometrics , vol.16 , pp. 3-14
    • Akaike, H.1
  • 3
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H (1987), "Factor analysis and AIC", Psychometrika, 52, 317-332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 5
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop, C.M., (1995), "Training with noise is equivalent to Tikhonov regularization", Neural Computation 7, 108-116.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 6
    • 34250108028 scopus 로고
    • Model Selection and Akaike's Information Criterion: The general theory and its analytical extension
    • Bozdogan, H (1987) "Model Selection and Akaike's Information Criterion: The general theory and its analytical extension", Psychometrika, 52, 345-370.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 7
    • 2142731041 scopus 로고
    • FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
    • Bozdogan, H & Ramirez, DE (1988), "FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC", Psychometrika 53 (3), 407-415.
    • (1988) Psychometrika , vol.53 , Issue.3 , pp. 407-415
    • Bozdogan, H.1    Ramirez, D.E.2
  • 8
    • 0031591140 scopus 로고    scopus 로고
    • Unifying the derivations for the Akaike and corrected Akaike information criteria
    • Cavanaugh, JE (1997), "Unifying the derivations for the Akaike and corrected Akaike information criteria", Statistics & Probability Letters, 33, 201-208.
    • (1997) Statistics & Probability Letters , vol.33 , pp. 201-208
    • Cavanaugh, J.E.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G & Herskovitz, E (1992), "A Bayesian method for the induction of probabilistic networks from data", Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovitz, E.2
  • 10
    • 0029372831 scopus 로고
    • The Helmholtz machine
    • Dayan, P. & Hinton, GE (1995), "The Helmholtz machine", Neural Computation 7, No.5, 889-904.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 889-904
    • Dayan, P.1    Hinton, G.E.2
  • 11
    • 0001219859 scopus 로고
    • Regularization theory and neural architectures
    • Girosi, F, et al, (1995) "Regularization theory and neural architectures", Neural Computation, 7, 219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1
  • 12
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised learning neural networks
    • Hinton, GE, Dayan, P, Frey, BJ, & Neal, RN (1995), "The wake-sleep algorithm for unsupervised learning neural networks", Science 268 1158-1160.
    • (1995) Science , vol.268 , pp. 1158-1160
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.N.4
  • 13
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • Hinton, GE & Zemel, RS (1994), "Autoencoders, minimum description length and Helmholtz free energy", Advances in NIPS, 6, 3-10.
    • (1994) Advances in NIPS , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 14
    • 70349119250 scopus 로고
    • Regression and time series model in samll samples
    • Hurvich, CM, & Tsai, CL (1989), "Regression and time series model in samll samples", Biometrika, 76, 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 15
    • 0020102315 scopus 로고
    • Optimal choice of AR and MA parts in autoregressive and moving-average models
    • Kashyap, RL (1982), "Optimal choice of AR and MA parts in autoregressive and moving-average models", IEEE Trans. PAMI, 4, 99-104.
    • (1982) IEEE Trans. PAMI , vol.4 , pp. 99-104
    • Kashyap, R.L.1
  • 16
    • 32044436029 scopus 로고    scopus 로고
    • Multisets Mixture learning based Ellipse Detection
    • Z.Y. Liu, H. Qiao, & L. Xu, "Multisets Mixture learning based Ellipse Detection", Pattern Recognition 39, pp 731-735, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 731-735
    • Liu, Z.Y.1    Qiao, H.2    Xu, L.3
  • 17
    • 0042842439 scopus 로고    scopus 로고
    • Strip Line Detection and Thinning by RPCL-Based Local PCA
    • Z.Y. Liu, K.C. Chiu, & L. Xu, "Strip Line Detection and Thinning by RPCL-Based Local PCA", Pattern Recognition Letters 24, 2335-2344, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2335-2344
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 18
    • 0037380809 scopus 로고    scopus 로고
    • Improved system for object detection and star/galaxy classification via local subspace analysis
    • Liu, ZY, Chiu, KC, & Xu, L (2003), " Improved system for object detection and star/galaxy classification via local subspace analysis", Neural Networks 16, 437-451.
    • (2003) Neural Networks , vol.16 , pp. 437-451
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 19
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • Ma, J,Wang, T, & Xu, L (2004), "A gradient BYY harmony learning rule on Gaussian mixture with automated model selection", Neurocomputing 56 481-487.
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 20
    • 0036079846 scopus 로고    scopus 로고
    • Convergence Analysis of Rival Penalized Competitive Learning (RPCL) Algorithm
    • Hawaii, USA, May 12-17
    • Ma, J & Xu, L (2002), "Convergence Analysis of Rival Penalized Competitive Learning (RPCL) Algorithm", Proc. of Intl. Joint Conf. on Neural Networks (IJCNN '02), Hawaii, USA, May 12-17, 2002, pp 1596-1602.
    • (2002) Proc. of Intl. Joint Conf. on Neural Networks (IJCNN '02) , pp. 1596-1602
    • Ma, J.1    Xu, L.2
  • 21
    • 0141853629 scopus 로고    scopus 로고
    • The Correct Convergence of the Rival Penalized Competitive Learning (RPCL) Algorithm
    • October 21-23, Kitakyushu, Japan, Vo
    • Ma, J & Xu, L "The Correct Convergence of the Rival Penalized Competitive Learning (RPCL) Algorithm", Proc. of Intl. Conf. on Neural Information Processing (ICONIP'98), October 21-23, 1998, Kitakyushu, Japan, Vo.1, pp239-242.
    • (1998) Proc. of Intl. Conf. on Neural Information Processing (ICONIP'98) , vol.1 , pp. 239-242
    • Ma, J.1    Xu, L.2
  • 22
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation
    • Mackey, D (1992) "A practical Bayesian framework for backpropagation", Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackey, D.1
  • 23
    • 0031084370 scopus 로고    scopus 로고
    • Regression and Time Series model selection using variants of the Schwarz information criterion
    • Neath, AA & Cavanaugh, JE (1997), "Regression and Time Series model selection using variants of the Schwarz information criterion", Communications in Statistics A, 26, 559-580.
    • (1997) Communications in Statistics A , vol.26 , pp. 559-580
    • Neath, A.A.1    Cavanaugh, J.E.2
  • 24
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T.Poggio & F.Girosi, "Networks for approximation and learning", Proc. of IEEE, 78, 1481-1497 (1990).
    • (1990) Proc. of IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 25
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner, RA & Walker, HF (1984), "Mixture densities, maximum likelihood, and the EM algorithm", SIAM Review, 26, 195-239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 26
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J (1986), "Stochastic complexity and modeling", Annals of Statistics, 14(3), 1080-1100.
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 28
    • 0033561894 scopus 로고    scopus 로고
    • On Cross Validation for Model Selection
    • Rivals, I & Personnaz, L (1999) "On Cross Validation for Model Selection", Neural Computation, 11, 863-870.
    • (1999) Neural Computation , vol.11 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G (1978), "Estimating the dimension of a model", Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical prediction
    • Stone, M (1974), "Cross-validatory choice and assessment of statistical prediction", J. Royal Statistical Society B, 36, 111-147.
    • (1974) J. Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 31
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • Stone, M (1977), "An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion", J. Royal Statistical Society B, 39 (1), 44-47.
    • (1977) J. Royal Statistical Society B , vol.39 , Issue.1 , pp. 44-47
    • Stone, M.1
  • 32
    • 0000319198 scopus 로고
    • Cross-validation: A review
    • Stone, M (1978), "Cross-validation: A review", Math. Operat. Statist., 9, 127-140.
    • (1978) Math. Operat. Statist , vol.9 , pp. 127-140
    • Stone, M.1
  • 33
    • 0001588455 scopus 로고
    • Comments on model selection criteria of Akaike and Schwartz
    • Stone, M (1979), "Comments on model selection criteria of Akaike and Schwartz. J. Royal Statistical Society B, 41 (2), 276-278.
    • (1979) J. Royal Statistical Society B , vol.41 , Issue.2 , pp. 276-278
    • Stone, M.1
  • 34
    • 84963178774 scopus 로고
    • Further analysis of data by Akaike's information criterion and the finite corrections
    • Sugiura, N (1978), "Further analysis of data by Akaike's information criterion and the finite corrections", Communications in Statistics A, 7, 12-26.
    • (1978) Communications in Statistics A , vol.7 , pp. 12-26
    • Sugiura, N.1
  • 36
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, CS & Boulton, DM (1968), "An information measure for classification", Computer Journal, 11, 185-194.
    • (1968) Computer Journal , vol.11 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 38
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace, CS & Dowe, DR (1999), "Minimum message length and Kolmogorov complexity", Computer Journal, 42 (4), 270-280.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-280
    • Wallace, C.S.1    Dowe, D.R.2
  • 40
    • 34247105235 scopus 로고    scopus 로고
    • A Unified Perspective and New Results on RHT Computing, Mixture Based Learning, and Multi-learner Based Problem Solving
    • Xu, L., (2007), "A Unified Perspective and New Results on RHT Computing, Mixture Based Learning, and Multi-learner Based Problem Solving", Pattern Recognition, Vol. 40, pp. 2129-2153, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 2129-2153
    • Xu, L.1
  • 41
    • 33847155556 scopus 로고    scopus 로고
    • Fundamentals, Challenges, and Advances of Statistical Learning for Knowledge Discovery and Problem Solving: A BYY Harmony Perspective
    • Keynote talk, Oct. 13-15, Beijing, China
    • Xu, L., (2005), "Fundamentals, Challenges, and Advances of Statistical Learning for Knowledge Discovery and Problem Solving: A BYY Harmony Perspective", Keynote talk, Proc. of Intl. Conf. on Neural Networks and Brain, Oct. 13-15, 2005, Beijing, China, Vol. 1, pp. 24-55.
    • (2005) Proc. of Intl. Conf. on Neural Networks and Brain , vol.1 , pp. 24-55
    • Xu, L.1
  • 42
    • 3843066216 scopus 로고    scopus 로고
    • Temporal BYY Encoding, Markovian State Spaces, and Space Dimension Determination
    • Xu, L. (2004), "Temporal BYY Encoding, Markovian State Spaces, and Space Dimension Determination", IEEE Tr. Neural Networks, V15, N5 pp. 1276-1295.
    • (2004) IEEE Tr. Neural Networks , vol.15 , Issue.N5 , pp. 1276-1295
    • Xu, L.1
  • 43
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
    • Xu, L (2004), "Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination", IEEE Tr. Neural Networks, V15, N4, pp. 885-902.
    • (2004) IEEE Tr. Neural Networks , vol.15 , Issue.N4 , pp. 885-902
    • Xu, L.1
  • 44
    • 3843056324 scopus 로고    scopus 로고
    • Bayesian Ying Yang Learning (I): A Unified Perspective for Statistical Modeling
    • N. Zhong and J. Liu eds, Springer, pp
    • Xu, L. (2004), "Bayesian Ying Yang Learning (I): A Unified Perspective for Statistical Modeling", Intelligent Technologies for Information Analysis, N. Zhong and J. Liu (eds), Springer, pp. 615-659.
    • (2004) Intelligent Technologies for Information Analysis , pp. 615-659
    • Xu, L.1
  • 45
    • 24344441147 scopus 로고    scopus 로고
    • Bayesian Ying Yang Learning (II): A New Mechanism for Model Selection and Regularization
    • N. Zhong and J. Liu eds, Springer, pp
    • Xu, L. (2004), "Bayesian Ying Yang Learning (II): A New Mechanism for Model Selection and Regularization", Intelligent Technologies for Information Analysis, N. Zhong and J. Liu (eds), Springer, pp. 661-706.
    • (2004) Intelligent Technologies for Information Analysis , pp. 661-706
    • Xu, L.1
  • 46
    • 34250013360 scopus 로고    scopus 로고
    • Xu, L. (2004), BI-directional BYY Learning for Mining Structures with Projected Polyhedra and Topological Map, Invited talk, in Proc. of FDM 2004: Foundations of Data Mining, eds., T.Y.Lin, S.Smale, T. Poggio, and C.J. Liau, Brighton, UK, Nov. 01, 2004, pp. 5-18.
    • Xu, L. (2004), "BI-directional BYY Learning for Mining Structures with Projected Polyhedra and Topological Map", Invited talk, in Proc. of FDM 2004: Foundations of Data Mining, eds., T.Y.Lin, S.Smale, T. Poggio, and C.J. Liau, Brighton, UK, Nov. 01, 2004, pp. 5-18.
  • 47
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularization, multi-sets-learning, and problem solving strategies
    • Xu, L. (2003), "Data smoothing regularization, multi-sets-learning, and problem solving strategies", Neural Networks, V. 15, No. 5-6, 817-825.
    • (2003) Neural Networks , vol.15 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 48
    • 3843095548 scopus 로고    scopus 로고
    • Independent Component Analysis and Extensions with Noise and Time: A Bayesian Ying-Yang Learning Perspective
    • Xu, L. (2003), "Independent Component Analysis and Extensions with Noise and Time: A Bayesian Ying-Yang Learning Perspective", Neural Information Processing Letters and Reviews, Vol.1, No.1, 1-52.
    • (2003) Neural Information Processing Letters and Reviews , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 49
    • 0036790879 scopus 로고    scopus 로고
    • BYY Harmony Learning, Structural RPCL, and Topological Self-Organizing on Mixture Models
    • Xu, L (2002), "BYY Harmony Learning, Structural RPCL, and Topological Self-Organizing on Mixture Models ", Neural Networks, V15, N8-9, 1125-1151.
    • (2002) Neural Networks , vol.15
    • Xu, L.1
  • 50
    • 0242474188 scopus 로고    scopus 로고
    • Bayesian Ying Yang Harmony Learning
    • Second edition, MA Arbib, Ed, Cambridge, MA: The MIT Press, pp
    • Xu, L, (2002), "Bayesian Ying Yang Harmony Learning", The Handbook of Brain Theory and Neural Networks, Second edition, (MA Arbib, Ed.), Cambridge, MA: The MIT Press, pp. 1231-1237.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 1231-1237
    • Xu, L.1
  • 51
    • 0035391741 scopus 로고    scopus 로고
    • BYY Harmony Learning, Independent State Space and Generalized APT Financial Analyses
    • Xu, L (2001), "BYY Harmony Learning, Independent State Space and Generalized APT Financial Analyses ", IEEE Tr. Neural Networks, 12 (4), 822-849.
    • (2001) IEEE Tr. Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 52
    • 0035259214 scopus 로고    scopus 로고
    • Best Harmony, Unified RPCL and Automated Model Selection for Unsupervised and Supervised Learning on Gaussian Mixtures, Three-Layer Nets and ME-RBF-SVM Models
    • Xu, L (2001), "Best Harmony, Unified RPCL and Automated Model Selection for Unsupervised and Supervised Learning on Gaussian Mixtures, Three-Layer Nets and ME-RBF-SVM Models", Intl J of Neural Systems 11 (1), 43-69.
    • (2001) Intl J of Neural Systems , vol.11 , Issue.1 , pp. 43-69
    • Xu, L.1
  • 53
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY Learning for State Space Approach, Hidden Markov Model and Blind Source Separation
    • Xu, L (2000), "Temporal BYY Learning for State Space Approach, Hidden Markov Model and Blind Source Separation", IEEE Tr. Signal Processing 48, 2132-2144.
    • (2000) IEEE Tr. Signal Processing , vol.48 , pp. 2132-2144
    • Xu, L.1
  • 54
    • 0344073962 scopus 로고    scopus 로고
    • RBF Nets, Mixture Experts, and Bayesian Ying-Yang Learning
    • Xu, L (1998), "RBF Nets, Mixture Experts, and Bayesian Ying-Yang Learning", Neurocomputing, Vol. 19, No.1-3, 223-257.
    • (1998) Neurocomputing , vol.19 , Issue.1-3 , pp. 223-257
    • Xu, L.1
  • 55
    • 0031628777 scopus 로고    scopus 로고
    • Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering
    • Anchorage
    • Xu, L, (1998), "Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering", Proc. of IJCNN98, Anchorage, Vol.II, pp. 2525-2530.
    • (1998) Proc. of IJCNN98 , vol.2 , pp. 2525-2530
    • Xu, L.1
  • 56
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang Machine, Clustering and Number of Clusters
    • Xu, L (1997), "Bayesian Ying-Yang Machine, Clustering and Number of Clusters", Pattern Recognition Letters 18, No.11-13, 1167-1178.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1167-1178
    • Xu, L.1
  • 57
    • 0030659998 scopus 로고    scopus 로고
    • New Advances on Bayesian Ying-Yang Learning System with Kullback and Non-Kullback Separation Functionals
    • Houston
    • Xu, L, (1997), "New Advances on Bayesian Ying-Yang Learning System with Kullback and Non-Kullback Separation Functionals", Proc. IEEE-INNS Intl. Joint Conf. on Neural Networks (IJCNN97), Houston, Vol. III, pp. 1942-1947.
    • (1997) Proc. IEEE-INNS Intl. Joint Conf. on Neural Networks (IJCNN97) , vol.3 , pp. 1942-1947
    • Xu, L.1
  • 58
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu, L, & Jordan, MI (1996), "On convergence properties of the EM algorithm for Gaussian mixtures", Neural Computation, 8, No.1, 1996, 129-151.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 59
    • 0005906827 scopus 로고
    • Bayesian-Kullback Coupled YING-YANG Machines: Unified Learnings and New Results on Vector Quantization
    • Oct 30-Nov.3, Beijing, pp
    • Xu, L, (1995), "Bayesian-Kullback Coupled YING-YANG Machines: Unified Learnings and New Results on Vector Quantization", Proc. Intl. Conf. on Neural Information Processing, Oct 30-Nov.3, 1995, Beijing, pp. 977-988.
    • (1995) Proc. Intl. Conf. on Neural Information Processing , pp. 977-988
    • Xu, L.1
  • 60
    • 0002754576 scopus 로고
    • A Unified Learning Framework: Multisets Modeling Learning
    • Invited Talk, Washington, DC, July 17-21
    • L. Xu, "A Unified Learning Framework: Multisets Modeling Learning", Invited Talk, Proc. of World Congress on Neural Networks (WCNN95), Washington, DC, July 17-21, 1995, Vol.I, pp. 35-42.
    • (1995) Proc. of World Congress on Neural Networks (WCNN95) , vol.1 , pp. 35-42
    • Xu, L.1
  • 62
    • 0028731590 scopus 로고
    • Multisets Modeling Learning: An Unified Theory for Supervised and Unsupervised Learning
    • Invited Talk, Orlando, Florida, June 26-July 2
    • L. Xu, "Multisets Modeling Learning: An Unified Theory for Supervised and Unsupervised Learning", Invited Talk, Proc. of IEEE ICNN94, Orlando, Florida, June 26-July 2, 1994, Vol.I, 315-320.
    • (1994) Proc. of IEEE ICNN94 , vol.1 , pp. 315-320
    • Xu, L.1
  • 63
    • 0028341934 scopus 로고
    • On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size
    • Xu, L, Krzyzak, A, & Yuille, AL (1994), "On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size", Neural Networks, 7, 609-628.
    • (1994) Neural Networks , vol.7 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.L.3
  • 64
    • 0027629412 scopus 로고
    • Rival Penalized Competitive Learning for Clustering Analysis, RBF net and Curve Detection
    • Xu, L, Krzyzak, A & Oja, E (1993), "Rival Penalized Competitive Learning for Clustering Analysis, RBF net and Curve Detection", IEEE Tr. on Neural Networks 4, 636-649.
    • (1993) IEEE Tr. on Neural Networks , vol.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 65
    • 0027387861 scopus 로고
    • Randomized Hough Transform (RHT): Basic Mechanisms, Algorithms and Complexities
    • Xu, L & Oja, E. (1993), "Randomized Hough Transform (RHT): Basic Mechanisms, Algorithms and Complexities", Computer Vision, Graphics, and Image Processing: Image Understanding, Vol.57, No.2, pp. 131-154.
    • (1993) Computer Vision, Graphics, and Image Processing: Image Understanding , vol.57 , Issue.2 , pp. 131-154
    • Xu, L.1    Oja, E.2
  • 66
    • 84986215606 scopus 로고
    • Unsupervised and Supervised Classifications by Rival Penalized Competitive Learning
    • Hauge, Netherlands
    • Xu, L, Krzyzak, A & Oja, E (1992), "Unsupervised and Supervised Classifications by Rival Penalized Competitive Learning", Proc. of 11th Intl Conf. on Pattern Recognition (ICPR92), Hauge, Netherlands, Vol.I, pp. 672-675.
    • (1992) Proc. of 11th Intl Conf. on Pattern Recognition (ICPR92) , vol.1 , pp. 672-675
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 67
    • 0039849065 scopus 로고
    • Recent Advances on Techniques Static Feedforward Networks with Supervised Learning
    • Xu, L, Klasa, A, & Yuille, A.L. (1992), "Recent Advances on Techniques Static Feedforward Networks with Supervised Learning", International Journal of Neural Systems, Vol.3, No.3, pp. 253-290.
    • (1992) International Journal of Neural Systems , vol.3 , Issue.3 , pp. 253-290
    • Xu, L.1    Klasa, A.2    Yuille, A.L.3
  • 68
    • 0026860706 scopus 로고
    • Several Methods for Combining Multiple Classifiers and Their Applications in Handwritten Character Recognition
    • Xu, L., Krzyzak, A., & Suen, C.Y. (1992), "Several Methods for Combining Multiple Classifiers and Their Applications in Handwritten Character Recognition", IEEE Tr. System, Man and Cybernetics, Vol. 22, No.3, pp. 418-435.
    • (1992) IEEE Tr. System, Man and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 69
    • 33747992562 scopus 로고
    • A New Curve Detection Method: Randomized Hough Transform (RHT)
    • Xu, L, Oja, E., & Kultanen, P. (1990), "A New Curve Detection Method: Randomized Hough Transform (RHT)", Pattern Recognition Letters, Vol.11, pp. 331-338.
    • (1990) Pattern Recognition Letters , vol.11 , pp. 331-338
    • Xu, L.1    Oja, E.2    Kultanen, P.3
  • 71
    • 46049106446 scopus 로고    scopus 로고
    • Bayesian Ying Yang Learning
    • Ying Yang Learning
    • Xu, L, (2007), "Bayesian Ying Yang Learning", Scholarpedia, p. 10469, http://scholarpedia.org/article/Bayesian Ying Yang Learning.
    • (2007) Scholarpedia , pp. 10469
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.