메뉴 건너뛰기




Volumn 4, Issue 4, 1993, Pages 636-649

Rival Penalized Competitive Learning for Clustering Analysis, RBF Net, and Curve Detection

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SOFTWARE SELECTION AND EVALUATION; IMAGE PROCESSING; LEARNING SYSTEMS; PERFORMANCE; STORAGE ALLOCATION (COMPUTER);

EID: 0027629412     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.238318     Document Type: Article
Times cited : (552)

References (26)
  • 2
    • 0022148098 scopus 로고
    • Vector quantization in speech coding
    • J. Makhoul, S. Rpucos, and H. Gish, “Vector quantization in speech coding,” Proc. IEEE, vol.73, no. 11, 1551–1558, 1985.
    • (1985) Proc. IEEE , vol.73 , Issue.11 , pp. 1551-1558
    • Makhoul, J.1    Rpucos, S.2    Gish, H.3
  • 3
    • 0024056708 scopus 로고
    • Image coding using vector quantization: A review
    • N. Nasrabadi and R. A. King, “Image coding using vector quantization: A review,” IEEE Trans. Commun. vol. 36, no. 8, pp. 957–971, 1988.
    • (1988) IEEE Trans. Commun , vol.36 , Issue.8 , pp. 957-971
    • Nasrabadi, N.1    King, R.A.2
  • 4
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody and C. Darken,“Fast learning in networks of locally tuned processing units,” Neural Computation, vol. 1, 281–294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 5
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • T. Poggio and F. Girosi, “Regularization algorithms for learning that are equivalent to multilayer networks,” Science, vol. 247, pp. 978–982, 1990.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 6
    • 0010069683 scopus 로고    scopus 로고
    • Evaluation of adaptive mixtures of competing experts
    • R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San CA:
    • S. J. Nowlan and G. E. Hinton, “Evaluation of adaptive mixtures of competing experts,” in Advances in Neural Information Processing System 3,R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San CA: 774–780.
    • Advances in Neural Information Processing System 3 , vol.3 , pp. 774-780
    • Nowlan, S.J.1    Hinton, G.E.2
  • 7
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” Cognitive Science, vol. 9, pp. 75–112, 1985.
    • (1985) Cognitive Science , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 8
    • 5244352553 scopus 로고
    • Competitive learning: from iterative activation to adaptive resonance
    • S. Grossberg, “Competitive learning: from iterative activation to adaptive resonance,” Cognitive Science, vol. 11, pp. 23–63, 1987.
    • (1987) Cognitive Science , vol.11 , pp. 23-63
    • Grossberg, S.1
  • 9
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • R. Hecht-Nielsen, “Counterpropagation networks,” Appl. Opt., vol. 26, pp. 4979–4984, 1987.
    • (1987) Appl. Opt. , vol.26 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 10
    • 0017120827 scopus 로고
    • Adaptive patten classification and universal recording: I. parallel development and coding of neural feature detectors
    • S. Grossberg, “Adaptive patten classification and universal recording: I. parallel development and coding of neural feature detectors,” Biol. Cybern., vol. 23, pp. 121–134, 1976.
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 11
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a self-organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54–115, 1987.
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 12
    • 84973857317 scopus 로고
    • ART 2: Self-organization of stable category recognition codes for analog output patterns
    • G. A. Carpenter and S. Grossberg, “ART 2: Self-organization of stable category recognition codes for analog output patterns,” Appl. Opt., vol. 26, pp. 4919–4930, 1987.
    • (1987) Appl. Opt. , vol.26 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 13
    • 0025235219 scopus 로고
    • ART 3: Hierarchical searching using chemical transmitters in self-organizing pattern recognition architectures
    • G. A. Carpenter and S. Grossberg, “ART 3: Hierarchical searching using chemical transmitters in self-organizing pattern recognition architectures,” Neural Networks, vol. 3, pp. 129–152, 1990.
    • (1990) Neural Networks , vol.3 , pp. 129-152
    • Carpenter, G.A.1    Grossberg, S.2
  • 15
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, pp. 1464–1480, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 16
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Apr.
    • R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., pp. 4–22, Apr. 1987.
    • (1987) IEEE ASSP Mag., pp , pp. 4-22
    • Lippmann, R.P.1
  • 17
    • 0020074887 scopus 로고
    • Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex
    • E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neuroscience, vol. 2, pp. 32–48, 1982.
    • (1982) J. Neuroscience , vol.2 , pp. 32-48
    • Bienenstock, E.L.1    Cooper, L.N.2    Munro, P.W.3
  • 18
    • 0024123145 scopus 로고
    • Adding a conscience to competitive learning
    • D. Desieno, “Adding a conscience to competitive learning,” in Proc. IEEE Int. Conf. Neural Networks, 1988, vol. I, pp. 117–124.
    • (1988) Proc. IEEE Int. Conf. Neural Networks , vol.1 , pp. 117-124
    • Desieno, D.1
  • 20
    • 84941439414 scopus 로고
    • Modified Hebbian learning for curve and surface Neural
    • L. Xu, E. Oja, and C. Y. Suen, “Modified Hebbian learning for curve and surface Neural vol. 1992.
    • (1992)
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 21
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Stat., vol. 22, pp. 400–407, 1951.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 22
    • 33747992562 scopus 로고    scopus 로고
    • A new curve detection methods: Randomized Hough Transform (RHT)
    • L. Xu, E. Oja, and P. Kultanen, “A new curve detection methods: Randomized Hough Transform (RHT),” Pattern Recognition Letters, vol. 11, no. 5, 1990.
    • Pattern Recognition Letters , vol.11 , Issue.5
    • Xu, L.1    Oja, E.2    Kultanen, P.3
  • 23
    • 84921177544 scopus 로고
    • Extended self-organizing map for curve detection
    • Lappeenranta University of Technology Sept.
    • L. Xu and E. Oja, “Extended self-organizing map for curve detection,” Research Report 16, Dept. Information Technology, Lappeenranta University of Technology, Sept. 1989.
    • (1989) Research Report 16, Dept. Information Technology
    • Xu, L.1    Oja, E.2
  • 24
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • J. Canny, “A computational approach to edge detection,” IEEE Trans. Patt. Anal. Machine Intell., vol. 8, pp. 679–698, 1986.
    • (1986) IEEE Trans. Patt. Anal. Machine Intell. , vol.8 , pp. 679-698
    • Canny, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.