-
2
-
-
4344599060
-
On the ballistic transport in nanometer-scaled DG MOSFETs
-
J. Saint Martin, A. Bournel, and P. Dollfus, "On the ballistic transport in nanometer-scaled DG MOSFETs," IEEE Trans. Electron Devices, vol. 51, pp. 1148-1155, 2004.
-
(2004)
IEEE Trans. Electron Devices
, vol.51
, pp. 1148-1155
-
-
Saint Martin, J.1
Bournel, A.2
Dollfus, P.3
-
3
-
-
29244435059
-
Understanding quasi-ballistic transport in nano-MOSFETs: Part I - Scattering in the channel and in the drain
-
P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi, and L. Selmi, "Understanding quasi-ballistic transport in nano-MOSFETs: part I - Scattering in the channel and in the drain," IEEE Trans. Electron Devices, vol. 52, pp. 2727-2735, 2005.
-
(2005)
IEEE Trans. Electron Devices
, vol.52
, pp. 2727-2735
-
-
Palestri, P.1
Esseni, D.2
Eminente, S.3
Fiegna, C.4
Sangiorgi, E.5
Selmi, L.6
-
4
-
-
14844320545
-
Characterization of the effective mobility by split C(V) technique in sub 0.1 um Si and SiGe PMOSFETs
-
K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo, " Characterization of the effective mobility by split C(V) technique in sub 0.1 um Si and SiGe PMOSFETs," Solid-State Electron., vol. 49, pp. 721-726, 2005.
-
(2005)
Solid-State Electron
, vol.49
, pp. 721-726
-
-
Romanjek, K.1
Andrieu, F.2
Ernst, T.3
Ghibaudo, G.4
-
5
-
-
33645519414
-
Ballistic and pocket limitations of mobility in nanometer Si metal-oxide semiconductor field-effect transistors
-
J. Lusakowski, W. Knap, Y. Meziani, J. P. Cesso, A. El Fatimy, R. Tauk, et al., "Ballistic and pocket limitations of mobility in nanometer Si metal-oxide semiconductor field-effect transistors," Appl. Phys. Lett., vol. 87, pp. 053507-3, 2005.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 053507-53513
-
-
Lusakowski, J.1
Knap, W.2
Meziani, Y.3
Cesso, J.P.4
El Fatimy, A.5
Tauk, R.6
-
6
-
-
33646524024
-
Differential magnetoresistance technique for mobility extraction in ultra-short channel FDSOI transistors
-
W. Chaisantikulwat, M. Mouis, G. Ghibaudo, C. Gallon, C. Fenouillet-Beranger, D. K. Maude, et al., "Differential magnetoresistance technique for mobility extraction in ultra-short channel FDSOI transistors," Solid-State Electron., vol. 50, pp. 637-643, 2006.
-
(2006)
Solid-State Electron
, vol.50
, pp. 637-643
-
-
Chaisantikulwat, W.1
Mouis, M.2
Ghibaudo, G.3
Gallon, C.4
Fenouillet-Beranger, C.5
Maude, D.K.6
-
7
-
-
33751527412
-
Experimental Comparison Between Sub-0.1-μm Ultrathin SOI Single- and Double-Gate MOSFETs: Performance and Mobility
-
J. Widiez, T. Poiroux, M. Vinet, M. Mouis, and S. Deleonibus, "Experimental Comparison Between Sub-0.1-μm Ultrathin SOI Single- and Double-Gate MOSFETs: Performance and Mobility," IEEE Trans. Nanotechnology, vol. 5, pp. 643-648, 2006.
-
(2006)
IEEE Trans. Nanotechnology
, vol.5
, pp. 643-648
-
-
Widiez, J.1
Poiroux, T.2
Vinet, M.3
Mouis, M.4
Deleonibus, S.5
-
8
-
-
46049114538
-
Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling
-
A. Cros, K. Romanjek, D. Fleury, S. Harrison, R. Cerutti, P. Coronel, et al., "Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling," IEDM Tech. Dig., pp. 663-666, 2006.
-
(2006)
IEDM Tech. Dig
, pp. 663-666
-
-
Cros, A.1
Romanjek, K.2
Fleury, D.3
Harrison, S.4
Cerutti, R.5
Coronel, P.6
-
10
-
-
0033169528
-
A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects
-
G. Baccarani and S. Reggiani, "A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects," IEEE Trans. Electron Devices, vol. 46, pp. 1656-1666, 1999.
-
(1999)
IEEE Trans. Electron Devices
, vol.46
, pp. 1656-1666
-
-
Baccarani, G.1
Reggiani, S.2
-
11
-
-
0036713397
-
Low ballistic mobility in submicron HEMTs
-
M. S. Shur, "Low ballistic mobility in submicron HEMTs," IEEE Electron Device Lett., vol. 23, pp. 511-513, 2002.
-
(2002)
IEEE Electron Device Lett
, vol.23
, pp. 511-513
-
-
Shur, M.S.1
-
12
-
-
0041525475
-
Ballistic transport in high electron mobility transistors
-
J. Wang and M. Lundstrom, "Ballistic transport in high electron mobility transistors," IEEE Trans. Electron Devices, vol. 50, pp. 1604-1609, 2003.
-
(2003)
IEEE Trans. Electron Devices
, vol.50
, pp. 1604-1609
-
-
Wang, J.1
Lundstrom, M.2
-
13
-
-
34248657955
-
Monte Carlo simulation of Double Gate MOSFET including multi sub-band description
-
doi: 10.1007/s10825-006-0043-4
-
J. Saint-Martin, A. Bournel, V. Aubry-Fortuna, F. Monsef, C. Chassat, and P. Dollfus, "Monte Carlo simulation of Double Gate MOSFET including multi sub-band description," J. Comput. Electron., doi: 10.1007/s10825-006-0043-4.
-
J. Comput. Electron
-
-
Saint-Martin, J.1
Bournel, A.2
Aubry-Fortuna, V.3
Monsef, F.4
Chassat, C.5
Dollfus, P.6
-
14
-
-
0022693437
-
First-order parameter extraction on enhancement silicon MOS transistors
-
M. F. Hamer, "First-order parameter extraction on enhancement silicon MOS transistors," IEE Proceedings. Part I. Solid-state and electron devices, vol. 133, pp. 49-54, 1986.
-
(1986)
IEE Proceedings. Part I. Solid-state and electron devices
, vol.133
, pp. 49-54
-
-
Hamer, M.F.1
-
15
-
-
30344460709
-
Comparison of multiple-gate MOSFET architectures using Monte Carlo simulation
-
J. Saint-Martin, A. Bournel, and P. Dollfus, "Comparison of multiple-gate MOSFET architectures using Monte Carlo simulation," Solid-State Electron., vol. 50, pp. 94-101, 2006.
-
(2006)
Solid-State Electron
, vol.50
, pp. 94-101
-
-
Saint-Martin, J.1
Bournel, A.2
Dollfus, P.3
-
16
-
-
0009509593
-
Carrier mobilities in silicon empirically related to doping and field
-
D. M. Caughey and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field," Proceedings of the IEEE, vol. 55, pp. 2192-2193, 1967.
-
(1967)
Proceedings of the IEEE
, vol.55
, pp. 2192-2193
-
-
Caughey, D.M.1
Thomas, R.E.2
-
17
-
-
84914709764
-
-
To calculate the mean free path, we cumulate the distance covered by each carrier during the crossing of the channel. Dividing this distance by the number of scattering events that he has undergone, we obtain the carrier free path. At the end of the simulation, the mean free path is the average of all carriers' free paths.
-
To calculate the mean free path, we cumulate the distance covered by each carrier during the crossing of the channel. Dividing this distance by the number of scattering events that he has undergone, we obtain the carrier free path. At the end of the simulation, the mean free path is the average of all carriers' free paths.
-
-
-
|