메뉴 건너뛰기




Volumn 29, Issue 4, 2008, Pages 392-406

Improving multiclass pattern recognition with a co-evolutionary RBFNN

Author keywords

Co operative co evolutionary algorithms; K means clustering; Multiclass classification; RBFNN

Indexed keywords

CLUSTERING ALGORITHMS; EVOLUTIONARY ALGORITHMS; PARAMETER ESTIMATION; PATTERN RECOGNITION; PROBLEM SOLVING;

EID: 38349047621     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.10.019     Document Type: Article
Times cited : (33)

References (55)
  • 1
    • 14344265818 scopus 로고    scopus 로고
    • Annalisa, A., Michelangelo, C., Simon, R., Peter, F., 2004. Redundant feature elimination for multi-class problems. In: Russ, G., Dale, S. (Eds.), Proc. of the 21st Internat. Conf. on Machine Learning (ICML 2004), vol. 69, pp. 33-40.
  • 2
    • 0029000115 scopus 로고
    • An algorithm to generate radial basis function (RBF)-like nets for classification problem
    • Asim R., Sandeep G., and Raymond M. An algorithm to generate radial basis function (RBF)-like nets for classification problem. Neural Networks 8 2 (1995) 179-201
    • (1995) Neural Networks , vol.8 , Issue.2 , pp. 179-201
    • Asim, R.1    Sandeep, G.2    Raymond, M.3
  • 3
    • 33748625457 scopus 로고    scopus 로고
    • GOLS-Genetic orthogonal least squares algorithm for training RBF networks
    • Barreto A.M.S., Barbosa H.J.C., and Ebecken N.F.F. GOLS-Genetic orthogonal least squares algorithm for training RBF networks. Neurocomputing 69 16-18 (2006) 2041-2064
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2041-2064
    • Barreto, A.M.S.1    Barbosa, H.J.C.2    Ebecken, N.F.F.3
  • 4
    • 0001857158 scopus 로고
    • Boosting the performance of RBF networks with dynamic decay adjustment
    • Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Denver, Colorado
    • Berthold M.R., and Diamond J. Boosting the performance of RBF networks with dynamic decay adjustment. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in Neural Information Processing Systems vol. 7 (1995), MIT Press, Denver, Colorado 12-528
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 12-528
    • Berthold, M.R.1    Diamond, J.2
  • 5
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • Blanco A., Delgado M., and Pegalajar M.C. A real-coded genetic algorithm for training recurrent neural networks. Neural Networks 14 (2001) 93-105
    • (2001) Neural Networks , vol.14 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 6
    • 0037297883 scopus 로고    scopus 로고
    • Inducing oblique decision trees with evolutionary algorithms
    • Cantú-Paz E., and Kamath C. Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. Evolution. Comput. 7 (2003) 54-68
    • (2003) IEEE Trans. Evolution. Comput. , vol.7 , pp. 54-68
    • Cantú-Paz, E.1    Kamath, C.2
  • 7
    • 0038045155 scopus 로고    scopus 로고
    • Radial basis function neural networks for nonlinear fisher discrimination and Neyman-Pearson classification
    • Casasent D., and Chen X.W. Radial basis function neural networks for nonlinear fisher discrimination and Neyman-Pearson classification. Neural Networks 16 (2003) 529-535
    • (2003) Neural Networks , vol.16 , pp. 529-535
    • Casasent, D.1    Chen, X.W.2
  • 8
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least square learning for radial basis function networks
    • Chen S., Wu Y., and Luk B.L. Combined genetic algorithm optimization and regularized orthogonal least square learning for radial basis function networks. IEEE Trans. Neural Networks 10 5 (1999) 1239-1243
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 (2000) 139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T.G., and Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2 (1995) 263-286
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 11
    • 2142796735 scopus 로고    scopus 로고
    • The constraint based decomposition (CBD) training architecture
    • Draghici S. The constraint based decomposition (CBD) training architecture. Neural Networks 14 (2001) 527-550
    • (2001) Neural Networks , vol.14 , pp. 527-550
    • Draghici, S.1
  • 12
    • 21844475408 scopus 로고    scopus 로고
    • Multiclass boosting for weak classifiers
    • Eibl G., and Pfeiffer K.P. Multiclass boosting for weak classifiers. J. Machine Learning Res. 6 (2005) 189-210
    • (2005) J. Machine Learning Res. , vol.6 , pp. 189-210
    • Eibl, G.1    Pfeiffer, K.P.2
  • 13
    • 0032633201 scopus 로고    scopus 로고
    • Eklund, W.P., Hoang, A., 1999. Comparative study of public-domain supervised machine-learning accuracy on the UCI database. In: Belur, V.D. (Ed.), Proceedings of SPIE, Data Mining and Knowledge Discovery: Theory, Tools, and Technology. vol. 3695, pp. 39-50.
  • 14
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA
    • Elisseeff A., and Weston J. A kernel method for multi-labelled classification. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems vol. 14 (2002), MIT Press, Cambridge, MA 81-687
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 81-687
    • Elisseeff, A.1    Weston, J.2
  • 15
    • 10444285705 scopus 로고    scopus 로고
    • Cooperative coevolution in inventory control optimisation
    • Smith G.D., Steele N.C., and Albrecht R.F. (Eds), Springer-Verlag, Berlin, Germany
    • Eriksson R., and Olsson B. Cooperative coevolution in inventory control optimisation. In: Smith G.D., Steele N.C., and Albrecht R.F. (Eds). Proc. Third Internat. Conf. on Artificial Neural Networks and Genetic Algorithms (1997), Springer-Verlag, Berlin, Germany 83-587
    • (1997) Proc. Third Internat. Conf. on Artificial Neural Networks and Genetic Algorithms , pp. 83-587
    • Eriksson, R.1    Olsson, B.2
  • 17
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • Shavlik J.W. (Ed), Morgan Kaufmann, San Francisco CA
    • Frank E., and Witten I.H. Generating accurate rule sets without global optimization. In: Shavlik J.W. (Ed). Proc. Fifteenth Internat. Conf. on Machine Learning (1998), Morgan Kaufmann, San Francisco CA 44-151
    • (1998) Proc. Fifteenth Internat. Conf. on Machine Learning , pp. 44-151
    • Frank, E.1    Witten, I.H.2
  • 18
    • 0032117676 scopus 로고    scopus 로고
    • Using model trees for classification
    • Frank E., Wang Y., Inglis S., et al. Using model trees for classification. Machine Learning 32 (1998) 63-76
    • (1998) Machine Learning , vol.32 , pp. 63-76
    • Frank, E.1    Wang, Y.2    Inglis, S.3
  • 20
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 1 (1997) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 22
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 (2000) 337-407
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 0037983742 scopus 로고    scopus 로고
    • Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance
    • Fu X.J., and Wang L.P. Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Trans. System Man Cybernet.-Part B 33 3 (2003) 399-409
    • (2003) IEEE Trans. System Man Cybernet.-Part B , vol.33 , Issue.3 , pp. 399-409
    • Fu, X.J.1    Wang, L.P.2
  • 24
  • 25
    • 0036073590 scopus 로고    scopus 로고
    • Gao, D.Q., Yang, G.X., 2002. Adaptive RBF neural networks for pattern classifications. In: Proc. 2002 Internat. Joint Conf. on Neural Networks (IJCNN '02), vol. 1, pp. 846-851.
  • 26
    • 33847405162 scopus 로고    scopus 로고
    • García-Pedrajas, N., Fyfe, C., 2006. Immune network based ensembles. In: European Symposium on Artificial Neural Networks, Bruges (Belgium), pp. 437-442.
  • 31
    • 84944326610 scopus 로고    scopus 로고
    • Parameter control within a co-operative co-evolutionary genetic algorithm
    • Proc. Seventh Conf. on Parallel Problem Solving From Nature. Merelo Guervós J.J., Adamidis P., Beyer H.-G., Fernández-Villacañas J.-L., and Schwefel H.-P. (Eds), Springer-Verlag, Berlin, Germany
    • Iorio A., and Li X. Parameter control within a co-operative co-evolutionary genetic algorithm. In: Merelo Guervós J.J., Adamidis P., Beyer H.-G., Fernández-Villacañas J.-L., and Schwefel H.-P. (Eds). Proc. Seventh Conf. on Parallel Problem Solving From Nature. Lecture Notes in Computer Science vol. 2439 (2002), Springer-Verlag, Berlin, Germany 247-256
    • (2002) Lecture Notes in Computer Science , vol.2439 , pp. 247-256
    • Iorio, A.1    Li, X.2
  • 32
    • 31844453166 scopus 로고    scopus 로고
    • Jing, Y., Pavlovic, V., Rehg, J.M. 2005. Efficient discriminative learning of Bayesian network classifiers via boosted augmented naive bayes. In: Proc. 22nd Internat. Conf. on Machine Learning. ACM International Conference Proceeding Series, vol. 119, pp. 369-376.
  • 33
    • 84899033524 scopus 로고    scopus 로고
    • Maximal margin labeling for multi-topic text categorization
    • Saul L.K., Weiss Y., and Bottou L. (Eds), MIT Press, Cambridge, MA
    • Kazawa H., Izumitani T., Taira H., and Maeda E. Maximal margin labeling for multi-topic text categorization. In: Saul L.K., Weiss Y., and Bottou L. (Eds). Advances in Neural Information Processing Systems vol. 17 (2005), MIT Press, Cambridge, MA 649-656
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 649-656
    • Kazawa, H.1    Izumitani, T.2    Taira, H.3    Maeda, E.4
  • 35
    • 33947156329 scopus 로고    scopus 로고
    • Bayesian Gaussian process classification with the EM-EP algorithm
    • Kim H.C., and Ghahramani Z. Bayesian Gaussian process classification with the EM-EP algorithm. IEEE Trans. Pattern Anal. Machine Intell. 28 12 (2006) 1948-1959
    • (2006) IEEE Trans. Pattern Anal. Machine Intell. , vol.28 , Issue.12 , pp. 1948-1959
    • Kim, H.C.1    Ghahramani, Z.2
  • 36
    • 38349065820 scopus 로고    scopus 로고
    • Kohavi, R., Becker, B., Sommerfield, D. 1997. Improving simple Bayes. In: Proc. European Conf. on Machine Learning.
  • 37
    • 0032123243 scopus 로고    scopus 로고
    • An Efficient MDL Based Construction of RBF Networks
    • Leonardis A., and Bischof H. An Efficient MDL Based Construction of RBF Networks. Neural Networks 11 (1998) 963-973
    • (1998) Neural Networks , vol.11 , pp. 963-973
    • Leonardis, A.1    Bischof, H.2
  • 39
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary Ensembles with Negative Correlation Learning
    • Liu Y., Yao X., and Higuchi T. Evolutionary Ensembles with Negative Correlation Learning. IEEE Trans. Evolution. Comput. 4 (2000) 380-387
    • (2000) IEEE Trans. Evolution. Comput. , vol.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 40
    • 38349055311 scopus 로고    scopus 로고
    • McCallum, A., 1999. Multi-label text classification with a mixture model trained by EM. In: Working Notes of the AAAI'99 Workshop on Text Learning, Orlando, FL.
  • 41
    • 0032661927 scopus 로고    scopus 로고
    • Using Correspondence Analysis to Combine Classifiers
    • Merz C.J. Using Correspondence Analysis to Combine Classifiers. Machine Learning 36 (1999) 33-58
    • (1999) Machine Learning , vol.36 , pp. 33-58
    • Merz, C.J.1
  • 43
    • 84964502488 scopus 로고    scopus 로고
    • Oyang, Y.J., Hwang, S.C., Ou, Y.Y., Chen, C.Y., Chen, Z.W., 2002. A novel learning algorithm for data classification with radial basis function networks. In: Proc. 9th Internat. Conf. on Neural Information Processing (ICONIP-2002), Singapore, pp. 1021-1026.
  • 44
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, USA pp. 185-208
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Source Advances in Kernel Methods: Support Vector Learning Table of Contents (1999), MIT Press, Cambridge, MA, USA pp. 185-208
    • (1999) Source Advances in Kernel Methods: Support Vector Learning Table of Contents
    • Platt, J.C.1
  • 45
    • 84878573836 scopus 로고    scopus 로고
    • Potter, M., De Jong, K. 1998. The coevolution of antibodies for concept learning. In: Eiben, A.E., Bck, T., Schoenauer, M., Schwefel, H.-P. (Eds.), Proc. Fifth Internat. Conf. on Parallel Problem Solving from Nature. Lecture Notes in Computer Science, vol. 1498, pp. 530-539.
  • 46
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: An architecture for evolving coadapted subcomponents
    • Potter M., and De Jong K. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolution. Comput. 8 (2000) 1-29
    • (2000) Evolution. Comput. , vol.8 , pp. 1-29
    • Potter, M.1    De Jong, K.2
  • 47
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: a boosting-based system for text categorization
    • Schapire R.E., and Singer Y. Boostexter: a boosting-based system for text categorization. Machine Learning 39 2-3 (2000) 135-168
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 48
    • 38049151043 scopus 로고    scopus 로고
    • GA-RBFNN learning algorithm for complex classifications
    • Tian J., Li M.Q., and Chen F.Z. GA-RBFNN learning algorithm for complex classifications. J. System Eng. 21 (2006) 163-170
    • (2006) J. System Eng. , vol.21 , pp. 163-170
    • Tian, J.1    Li, M.Q.2    Chen, F.Z.3
  • 49
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb G.I. Multiboosting: A technique for combining boosting and wagging. Machine Learning 40 (2000) 159-196
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 50
    • 33644988819 scopus 로고    scopus 로고
    • A fast kernel-based nonlinear discriminant analysis for multi-class problems
    • Xu Y., Zhang D., and Jin Z. A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognition 39 (2006) 1026-1033
    • (2006) Pattern Recognition , vol.39 , pp. 1026-1033
    • Xu, Y.1    Zhang, D.2    Jin, Z.3
  • 51
    • 0006406095 scopus 로고    scopus 로고
    • DistAI: An inter-pattern distance-based constructive learning algorithm
    • Yang J., Parekh R., and Honavar V. DistAI: An inter-pattern distance-based constructive learning algorithm. Intell. Data Anal. 3 (1999) 55-73
    • (1999) Intell. Data Anal. , vol.3 , pp. 55-73
    • Yang, J.1    Parekh, R.2    Honavar, V.3
  • 52
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • Zhang M.L., and Zhou Z.H. Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18 (2006) 1338-1351
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 53
    • 0030148076 scopus 로고    scopus 로고
    • Evolutionary learning of nearest neighbor MLP
    • Zhao Q.F., and Higuchi T. Evolutionary learning of nearest neighbor MLP. IEEE Trans. Neural Networks 7 (1996) 762-767
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 762-767
    • Zhao, Q.F.1    Higuchi, T.2
  • 54
    • 0036700430 scopus 로고    scopus 로고
    • RBFN structure determination strategy based on PLS and Gas
    • Zhao W.X., and Wu L.D. RBFN structure determination strategy based on PLS and Gas. J. Software 13 (2002) 1450-1455
    • (2002) J. Software , vol.13 , pp. 1450-1455
    • Zhao, W.X.1    Wu, L.D.2
  • 55
    • 0032961082 scopus 로고    scopus 로고
    • A global learning algorithm for a RBF Network
    • Zhu Q., Cai Y., and Liu L. A global learning algorithm for a RBF Network. Neural Networks 12 (1999) 527-540
    • (1999) Neural Networks , vol.12 , pp. 527-540
    • Zhu, Q.1    Cai, Y.2    Liu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.