메뉴 건너뛰기




Volumn 69, Issue 16-18, 2006, Pages 2041-2064

GOLS-Genetic orthogonal least squares algorithm for training RBF networks

Author keywords

Genetic algorithms; Orthogonal least squares algorithm; Radial basis function networks

Indexed keywords

COMPUTATIONAL METHODS; COMPUTER SIMULATION; GENETIC ALGORITHMS; NUMERICAL METHODS;

EID: 33748625457     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2005.10.004     Document Type: Article
Times cited : (26)

References (70)
  • 3
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • Billings S.A., and Zheng G.L. Radial basis function network configuration using genetic algorithms. Neural Networks 8 6 (1995) 877-890
    • (1995) Neural Networks , vol.8 , Issue.6 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 4
    • 33748609653 scopus 로고    scopus 로고
    • C. Blake, C. Merz, UCI repository of machine learning databases, URL: 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, 1998.
  • 5
    • 33748584017 scopus 로고    scopus 로고
    • E. Blanzieri, Learning algorithms for radial basis function networks: synthesis, experiments and cognitive modelling, Ph.D. Thesis, Center of Cognitive Science-University and Polytechnic of Turin, 1998.
  • 6
    • 2942662603 scopus 로고    scopus 로고
    • Evolutionary approaches to dynamic optimization problems
    • Branke J., and Bäck T. (Eds), San Francisco, CA, USA
    • Branke J. Evolutionary approaches to dynamic optimization problems. In: Branke J., and Bäck T. (Eds). Evolutionary Algorithms for Dynamic Optimization Problems (2001), San Francisco, CA, USA 27-30
    • (2001) Evolutionary Algorithms for Dynamic Optimization Problems , pp. 27-30
    • Branke, J.1
  • 7
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D.S., and Lowe D. Multivariable functional interpolation and adaptive networks. Complex Systems 2 (1988) 321-355
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 10
    • 33748591552 scopus 로고    scopus 로고
    • S. Chen, Multi-output regression using a locally regularised orthogonal least square algorithm, Technical Report, Department of Electronics and Computer Science-University of Southhampton, Highfield, Southhampton SO17 1BJ, UK, 2002.
  • 11
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50 5 (1989) 1873-1896
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 12
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2 2 (1991) 302-309
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 13
    • 0026992119 scopus 로고    scopus 로고
    • S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares algorithm for training multi-output radial basis function networks, in: IEEE Proceedings, vol. Part F 139, 1992, pp. 378-384.
  • 14
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • Chen S., Wu Y., and Luk B.L. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE-NN 10 5 (1999) 1239
    • (1999) IEEE-NN , vol.10 , Issue.5 , pp. 1239
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 15
    • 0029193859 scopus 로고
    • A two-layer learning method for radial basis function networks using combined genetic and regularised OLS algorithms
    • IEEE, Silverspring, MD
    • Chen S., Wun Y., and Alkadhimi K. A two-layer learning method for radial basis function networks using combined genetic and regularised OLS algorithms. Proceedings of Genetic Algorithms in Engineering Systems. Innovations and Applications vol. 414 (1995), IEEE, Silverspring, MD 245-249
    • (1995) Proceedings of Genetic Algorithms in Engineering Systems. Innovations and Applications , vol.414 , pp. 245-249
    • Chen, S.1    Wun, Y.2    Alkadhimi, K.3
  • 16
    • 33748616223 scopus 로고    scopus 로고
    • H.G. Cobb, An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments, Technical Report AIC-90-001, Navy Center for Applied Research in Artificial Intelligence, 1991.
  • 21
    • 0000308566 scopus 로고
    • Real coded genetic algorithms and interval schemata
    • Whitley D. (Ed), Morgan Kaufmann, San Mateo, CA
    • Eshelman L., and Schaffer J. Real coded genetic algorithms and interval schemata. In: Whitley D. (Ed). Foundations of Genetic Algorithms 2 (1993), Morgan Kaufmann, San Mateo, CA 187-202
    • (1993) Foundations of Genetic Algorithms 2 , pp. 187-202
    • Eshelman, L.1    Schaffer, J.2
  • 22
    • 0000386644 scopus 로고
    • Growing cell structures-a self-organizing network in k dimensions
    • Aleksander I., and Taylor J. (Eds), North-Holland, Amsterdam, Netherlands
    • Fritzke B. Growing cell structures-a self-organizing network in k dimensions. In: Aleksander I., and Taylor J. (Eds). Artificial Neural Networks, 2 vol. II (1992), North-Holland, Amsterdam, Netherlands 1051-1056
    • (1992) Artificial Neural Networks, 2 , vol.II , pp. 1051-1056
    • Fritzke, B.1
  • 23
    • 0002370522 scopus 로고
    • Some extensions of radial basis functions and their applications in artificial intelligence
    • Girosi F. Some extensions of radial basis functions and their applications in artificial intelligence. Compute. Math. Appl. 24 12 (1992) 61-80
    • (1992) Compute. Math. Appl. , vol.24 , Issue.12 , pp. 61-80
    • Girosi, F.1
  • 24
    • 33748611592 scopus 로고    scopus 로고
    • F. Girosi, T. Poggio, Networks and the best approximation property, Technical Report AIM-1164, Massachusetts Institute of Technology Artificial Intelligence Laboratory and Center for Biological Information Processing Whitaker College, 1989.
  • 26
    • 33748626228 scopus 로고    scopus 로고
    • D. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking, Technical Report IlliGAL Report 90001, Illinois Genetic Algorithms Laboratory, Department of General Engineering, University of Illinois, Urbana, IL, USA, 1990.
  • 27
    • 33748628213 scopus 로고    scopus 로고
    • G.H. Golub, C.F.V. Loan, Matrix Computations, second ed., Johns Hopkins Series in Mathematical Sciences, The Johns Hopkins University Press, Baltimore, MD, 1993.
  • 30
    • 33748600638 scopus 로고    scopus 로고
    • J. Hefferon, Linear Algebra, Mathematics, Saint Michael's College, Colchester, VT, USA (05439), 2001.
  • 31
    • 0032136585 scopus 로고    scopus 로고
    • Tackling real-coded genetic algorithms: operators and tools for behavioural analysis
    • Herrera F., Lozano M., and Verdegay J.L. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12 4 (1998) 265-319
    • (1998) Artif. Intell. Rev. , vol.12 , Issue.4 , pp. 265-319
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 32
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton G.E. Connectionist learning procedures. Artif. Intell. 40 (1989) 185-234
    • (1989) Artif. Intell. , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 34
    • 0031222638 scopus 로고    scopus 로고
    • Givens rotation based fast backward elimination algorithm for RBF neural network pruning
    • Hong X., and Billings S.A. Givens rotation based fast backward elimination algorithm for RBF neural network pruning. IEE Proc. D, Control Theory and Applications 5 144 (1997) 381-384
    • (1997) IEE Proc. D, Control Theory and Applications , vol.5 , Issue.144 , pp. 381-384
    • Hong, X.1    Billings, S.A.2
  • 35
    • 0031277461 scopus 로고    scopus 로고
    • An efficient method to construct a radial basis function neural network classifier
    • Hwang Y., and Bang S. An efficient method to construct a radial basis function neural network classifier. Neural Networks 10 8 (1997) 1495-1503
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1495-1503
    • Hwang, Y.1    Bang, S.2
  • 36
    • 33748593068 scopus 로고    scopus 로고
    • V. Kadirkamanathan, M. Niranjan, A function estimation approach to sequential learning with neural networks, Technical Report, CUED/F-INFENG/TR.111, Cambridge University Engineering Department, Cambridge, England, September 1992.
  • 37
    • 33748597635 scopus 로고    scopus 로고
    • A. Lapedes, R. Farber, How neural nets work, Neural Information Processing Systems, American Institute of Physics, New York, 1998, pp. 442-456.
  • 38
    • 0033340056 scopus 로고    scopus 로고
    • G.P. Liu, V. Kadirkamanathan, Multiobjective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms, in: IEE Proceedings Part P: Control Theory and Applications, vol. 146(5), 1999, pp. 373-382.
  • 39
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., and Glass L. Oscillation and chaos in physiological control systems. Science 197 (1977) 287-289
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 41
    • 0031623622 scopus 로고    scopus 로고
    • M.W. Mak, K.W. Cho, Genetic evolution of radial basis function centers for pattern classification, in: Proceedings of the 1998 IEEE International Joint Conference on Neural Networks, vol. 1, 1998, pp. 669-673.
  • 42
    • 33748620258 scopus 로고    scopus 로고
    • O.L. Mangasarian, W.N. Street, W.H. Wolberg, Breast cancer diagnosis and prognosis via linear programming, Technical Report MP-TR-1994-10, University of Wisconsin, Madison, December 1994.
  • 43
    • 33748619725 scopus 로고    scopus 로고
    • O.L. Mangasarian, W. H. Wolberg, Cancer diagnosis via linear programming, Technical Report CS-TR-1990-958, University of Wisconsin, Madison, August 1990.
  • 45
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., and Darken C. Fast learning in networks of locally-tuned processing units. Neural Comput. 1 2 (1989) 281-294
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 46
    • 33751560009 scopus 로고
    • Regularisation in the selection of radial basis function centres
    • Orr M. Regularisation in the selection of radial basis function centres. Neural Comput. 7 3 (1995) 606-623
    • (1995) Neural Comput. , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.1
  • 47
    • 33748584846 scopus 로고    scopus 로고
    • M.J.L. Orr, Introduction to radial basis function networks, Technical Report, Centre for Cognitive Science, University of Edinburgh, April 1996.
  • 48
    • 85042234389 scopus 로고    scopus 로고
    • Optimising the widths of radial basis functions
    • IEEE, Belo Horizonte, Brazil
    • Orr M.J.L. Optimising the widths of radial basis functions. Vth Brazilian Symposium on Neural Networks (1998), IEEE, Belo Horizonte, Brazil 26-29
    • (1998) Vth Brazilian Symposium on Neural Networks , pp. 26-29
    • Orr, M.J.L.1
  • 49
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J.C. A resource-allocating network for function interpolation. Neural Comput. 3 2 (1991) 213-225
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.C.1
  • 50
    • 0025490985 scopus 로고
    • Network for approximation and learning
    • Poggio T., and Girosi F. Network for approximation and learning. Proceedings of the IEEE 78 9 (1990) 1481-1497
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 51
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: a review
    • Mason J.C., and Cox M.G. (Eds), Clarendon Press, Oxford
    • Powell M.J.D. Radial basis functions for multivariable interpolation: a review. In: Mason J.C., and Cox M.G. (Eds). Algorithms for Approximation (1987), Clarendon Press, Oxford 143-167
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 52
    • 33748613462 scopus 로고    scopus 로고
    • M.J.D. Powell, Radial basis function methods for interpolation to functions of many variables, NA2001/11, DAMTP, University of Cambridge, Numerical Analysis Group, 2001.
  • 53
    • 33748584299 scopus 로고    scopus 로고
    • L. Prechelt, Proben1: A set of neural network benchmark problems and benchmarking rules, Technical Report 21/94, Fakultat fur Informatik, Universitat Karlsruhe, 76128 Karlsruhe, Germany, uRL: 〈citeseer.nj.nec.com/prechelt94proben.html〉, September 1994.
  • 54
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluations of neural network learning algorithms: current research practice
    • Prechelt L. A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Networks 9 3 (1996) 457-462
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 457-462
    • Prechelt, L.1
  • 58
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by backpropagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 59
    • 33748629092 scopus 로고    scopus 로고
    • W. Sarle, Stopped training and other remedies for overfitting, in: Proceedings of the 27th Symposium on Interface, 1995, pp. 352-360.
  • 60
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 6 2 (1978) 461-464
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 61
    • 0029733132 scopus 로고    scopus 로고
    • On the efficiency of the orthogonal least squares training method for radial basis function networks
    • Sherstinsky A., and Picard R.W. On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Trans. Neural Networks 7 1 (1996) 195-200
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.1 , pp. 195-200
    • Sherstinsky, A.1    Picard, R.W.2
  • 62
    • 33748596040 scopus 로고    scopus 로고
    • A.F. Sheta, K.D. Jong, Time-series forecasting using GA-tuned radial basis functions, Information Sciences (Special issue).
  • 63
    • 0000517353 scopus 로고
    • Improving the performance of radial basis function networks by learning center locations
    • Moody J.E., Hanson S.J., and Lippmann R.P. (Eds), Morgan Kaufmann, Loas Altos, CA
    • Wettschereck D., and Dietterich T. Improving the performance of radial basis function networks by learning center locations. In: Moody J.E., Hanson S.J., and Lippmann R.P. (Eds). Advances in Neural Information Processing Systems vol. 4 (1992), Morgan Kaufmann, Loas Altos, CA 1133-1140
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 1133-1140
    • Wettschereck, D.1    Dietterich, T.2
  • 64
    • 0000156268 scopus 로고    scopus 로고
    • Genetic evolution of radial basis function coverage using orthogonal niches
    • Whitehead B.A. Genetic evolution of radial basis function coverage using orthogonal niches. IEEE Trans. Neural Networks 7 6 (1996) 1525-1528
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.6 , pp. 1525-1528
    • Whitehead, B.A.1
  • 65
    • 0028208116 scopus 로고
    • Evolving space-filling curves to distribute radial basis functions over an input space
    • Whitehead B.A., and Choate T.D. Evolving space-filling curves to distribute radial basis functions over an input space. IEEE Trans. Neural Networks 5 1 (1993) 15-23
    • (1993) IEEE Trans. Neural Networks , vol.5 , Issue.1 , pp. 15-23
    • Whitehead, B.A.1    Choate, T.D.2
  • 66
    • 0030197198 scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • Whitehead B.A., and Choate T.D. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans. Neural Networks 7 4 (1995) 869-880
    • (1995) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 68
    • 0001403575 scopus 로고
    • Genetic algorithms for real parameter optimization
    • Rawlins G.J. (Ed), Morgan Kaufmann, San Mateo, CA
    • Wright A.H. Genetic algorithms for real parameter optimization. In: Rawlins G.J. (Ed). Foundations of Genetic Algorithms (1991), Morgan Kaufmann, San Mateo, CA 205-218
    • (1991) Foundations of Genetic Algorithms , pp. 205-218
    • Wright, A.H.1
  • 69
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L., Sundararajan N., and Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 9 (1997) 461-478
    • (1997) Neural Comput. , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 70
    • 0004163317 scopus 로고    scopus 로고
    • Q.F. Zhao, O. Hammami, K. Kuroda, K. Saito, Cooperative co-evolutionary algorithm-how to evaluate a module?, in: IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 2000, pp. 150-157.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.