메뉴 건너뛰기




Volumn 14, Issue 4-5, 2001, Pages 527-550

The constraint based decomposition (CBD) training architecture

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINT THEORY; CONVERGENCE OF NUMERICAL METHODS; PROBLEM SOLVING;

EID: 2142796735     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(01)00040-5     Document Type: Article
Times cited : (19)

References (84)
  • 1
    • 84958631565 scopus 로고    scopus 로고
    • ELEM2: A learning system for more accurate classifications
    • R.E. Mercer, Neufeld E. Berlin: Springer-Verlag
    • An A., Cercone N. ELEM2: a learning system for more accurate classifications. Mercer R.E., Neufeld E. Lecture notes in artificial intelligence. vol. 1418:1998;426-441 Springer-Verlag, Berlin.
    • (1998) Lecture Notes in Artificial Intelligence , vol.1418 , pp. 426-441
    • An, A.1    Cercone, N.2
  • 2
    • 85033152836 scopus 로고
    • Growing layers of perceptrons; Introducing the extentron algorithm
    • Baltimore
    • Baffes, P. T., & Zelle, J. M. (1992). Growing layers of perceptrons; Introducing the extentron algorithm. In International Joint Conference on Neural Networks (vol. 2, pp. 392-397). Baltimore.
    • (1992) In International Joint Conference on Neural Networks , vol.2 , pp. 392-397
    • Baffes, P.T.1    Zelle, J.M.2
  • 3
    • 0042120077 scopus 로고
    • The patch algorithm: Fast design of binary feedforward neural networks
    • Barkema G.T., Andree H.M.A., Taal A. The patch algorithm: fast design of binary feedforward neural networks. Network. 5:1993;393-407.
    • (1993) Network , vol.5 , pp. 393-407
    • Barkema, G.T.1    Andree, H.M.A.2    Taal, A.3
  • 4
    • 0342602870 scopus 로고    scopus 로고
    • C. Gorini, E. Hart, W. Meyer, & T. Phillips. Washington DC: Mathematical Association of America
    • Bennett K.P., Bredensteiner E.J. Gorini C., Hart E., Meyer W., Phillips T. Geometry at work. 1998;Mathematical Association of America, Washington DC.
    • (1998) Geometry at Work
    • Bennett, K.P.1    Bredensteiner, E.J.2
  • 5
    • 0012854245 scopus 로고
    • Tilinglike learning in the parity machine
    • Biehl M., Opper M. Tilinglike learning in the parity machine. Physical Review A. 44:(10):1991;6888-6894.
    • (1991) Physical Review a , vol.44 , Issue.10 , pp. 6888-6894
    • Biehl, M.1    Opper, M.2
  • 12
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D.S., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Systems. 2:1988;321-323.
    • (1988) Complex Systems , vol.2 , pp. 321-323
    • Broomhead, D.S.1    Lowe, D.2
  • 14
    • 0029411712 scopus 로고
    • The target switch algorithm: A constructive learning procedure for feed-forward neural networks [Letter]
    • Campbell C., Vicente C.P. The target switch algorithm: a constructive learning procedure for feed-forward neural networks [Letter]. Neural Computation. 7:(6):1995;1245-1264.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1245-1264
    • Campbell, C.1    Vicente, C.P.2
  • 15
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., Niblett T. The CN2 induction algorithm. Machine Learning. 3:1989;261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 16
    • 0028201982 scopus 로고
    • Three algorithms for estimating the domain of validity of feedforward neural networks
    • Courrieu P. Three algorithms for estimating the domain of validity of feedforward neural networks. Neural Networks. 7:(1):1994;169-174.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 169-174
    • Courrieu, P.1
  • 17
    • 0343037104 scopus 로고
    • The constraint based decomposition training architecture
    • San Diego, CA
    • Draghici, S. (1994). The constraint based decomposition training architecture. In Proceedings of World Congress on Neural Networks (vol. 3, pp. 545-555). San Diego, CA.
    • (1994) In Proceedings of World Congress on Neural Networks , vol.3 , pp. 545-555
    • Draghici, S.1
  • 22
    • 84957691661 scopus 로고    scopus 로고
    • Cascade error projection: A learning algorithm for hardware implementation
    • J. Mira, & J.V. Sánchez-Andrées. Berlin: Springer-Verlag
    • Duong T.A., Daud T. Cascade error projection: a learning algorithm for hardware implementation. Mira J., Sánchez-Andrées J.V. Foundations and tools for neural modeling, Lecture Notes in Computer Science. 1999;450-457 Springer-Verlag, Berlin.
    • (1999) Foundations and Tools for Neural Modeling, Lecture Notes in Computer Science , pp. 450-457
    • Duong, T.A.1    Daud, T.2
  • 24
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • R.P. Lippmann, J.E. Moody, & D.S. Touretzky. Denver, CO: Morgan Kaufmann
    • Fahlman S.E. The recurrent cascade-correlation architecture. Lippmann R.P., Moody J.E., Touretzky D.S. Advances in neural information processing systems 3. 1991;190-196 Morgan Kaufmann, Denver, CO.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 190-196
    • Fahlman, S.E.1
  • 27
    • 0004259250 scopus 로고    scopus 로고
    • New York: Oxford University Press and The Inst. of Physics. Publ
    • Fiesler E., Beale R. Handbook of neural computation. 1996;Oxford University Press and The Inst. of Physics. Publ, New York.
    • (1996) Handbook of Neural Computation
    • Fiesler, E.1    Beale, R.2
  • 29
    • 0000783575 scopus 로고
    • The Upstart algorithm: A method for constructing and training feedforward neural networks
    • Frean M. The Upstart algorithm: a method for constructing and training feedforward neural networks. Neural Computation. 2:1990;198-209.
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 32
    • 0002185915 scopus 로고
    • Induction of oblique decision tree
    • Washington, DC
    • Heath, S. K. D., & Salzberg, S. (1993). Induction of oblique decision tree. In IJCAI-93, Washington, DC.
    • (1993) In IJCAI-93
    • Heath, S.K.D.1    Salzberg, S.2
  • 35
    • 0026896593 scopus 로고
    • Learning with limited numerical precision using the Cascade-Correlation algorithm
    • Höhfeld M., Fahlman S.E. Learning with limited numerical precision using the Cascade-Correlation algorithm. IEEE Transactions on Neural Networks. 3:(4):1992;602-611.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.4 , pp. 602-611
    • Höhfeld, M.1    Fahlman, S.E.2
  • 36
    • 0003026625 scopus 로고
    • Big omicron and big omega and big theta
    • Knuth D.E. Big omicron and big omega and big theta. SIGACT News. 8:(2):1976;18-24.
    • (1976) SIGACT News , vol.8 , Issue.2 , pp. 18-24
    • Knuth, D.E.1
  • 37
    • 0024168388 scopus 로고
    • Learning vector quantization
    • Kohonen T. Learning vector quantization. Neural Networks. 1:(Suppl. 1):1988;303.
    • (1988) Neural Networks , vol.1 , Issue.SUPPL. 1 , pp. 303
    • Kohonen, T.1
  • 39
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structuring learning in feedforward neural networks for regression problems
    • Kwok T.-Y., Yeung D.-Y. Constructive algorithms for structuring learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks. 8:(3):1997;630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 40
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Kwok T.Y., Yeung D.Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks. 8:(5):1997;1131-1148.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 42
    • 0033097130 scopus 로고    scopus 로고
    • Fast initialization for cascade-correlation learning [Brief paper]
    • Lehtokangas M. Fast initialization for cascade-correlation learning [Brief paper]. IEEE-NN. 10:(2):1999;410.
    • (1999) IEEE-NN , vol.10 , Issue.2 , pp. 410
    • Lehtokangas, M.1
  • 43
    • 0032298859 scopus 로고    scopus 로고
    • Improvement of cascade correlation learning algorithm with an evolutionary initialization
    • Liang H., Dai G.L. Improvement of cascade correlation learning algorithm with an evolutionary initialization. Information Sciences. 112:(1-4):1998;1-6.
    • (1998) Information Sciences , vol.112 , Issue.14 , pp. 1-6
    • Liang, H.1    Dai, G.L.2
  • 44
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • Marchand M., Golea M., Rújan P. A convergence theorem for sequential learning in two-layer perceptrons. Europhysics Letters. 11:(6):1990;487-492.
    • (1990) Europhysics Letters , vol.11 , Issue.6 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Rújan, P.3
  • 45
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithm
    • Mezard M., Nadal J.P. Learning in feedforward layered networks: the tiling algorithm. J. Phys. A: Math. Gen. 22:1989;2191-2203.
    • (1989) J. Phys. A: Math. Gen. , vol.22 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.P.2
  • 46
    • 0002056465 scopus 로고
    • Version spaces: A candidate elimination approach to rule learning
    • Mitchell T.M. Version spaces: a candidate elimination approach to rule learning. IJCAI. 1:1977;1139-1151.
    • (1977) IJCAI , vol.1 , pp. 1139-1151
    • Mitchell, T.M.1
  • 48
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., Darken C.J. Fast learning in networks of locally-tuned processing units. Neural Computation. 1:1989;281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 52
    • 0029306954 scopus 로고
    • On sequential construction of binary neural networks
    • Muselli M. On sequential construction of binary neural networks. IEEE Transactions on Neural Networks. 6:1995;678-690.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 678-690
    • Muselli, M.1
  • 54
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural-network learning algorithms for pattern classification
    • Parekh R., Yang J., Honavar V. Constructive neural-network learning algorithms for pattern classification. IEEE Transactions on Neural Networks. 11:(2):2000;436.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.2 , pp. 436
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 55
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proceedings of IEEE. 78:(9):1990;1481-1497.
    • (1990) Proceedings of IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 56
    • 0031193357 scopus 로고    scopus 로고
    • Investigation of the cascor family of learning algorithms
    • Prechelt L. Investigation of the cascor family of learning algorithms. Neural Networks. 10:(5):1997;885-896.
    • (1997) Neural Networks , vol.10 , Issue.5 , pp. 885-896
    • Prechelt, L.1
  • 57
    • 0343908670 scopus 로고    scopus 로고
    • Classification using Φ-machines and constructive function approximation
    • San Francisco, CA
    • Precup, D., & Utgoff, P. E. (1998). Classification using Φ-machines and constructive function approximation. In Proc. 15th International Conference on Machine Learning (pp. 439-444). San Francisco, CA.
    • (1998) In Proc. 15th International Conference on Machine Learning , pp. 439-444
    • Precup, D.1    Utgoff, P.E.2
  • 61
    • 0027809638 scopus 로고
    • Divide and conquer neural networks
    • Romaniuk S.T., Hall L.O. Divide and conquer neural networks. Neural Networks. 6:1993;1105-1116.
    • (1993) Neural Networks , vol.6 , pp. 1105-1116
    • Romaniuk, S.T.1    Hall, L.O.2
  • 62
    • 0004986793 scopus 로고
    • Learning by minimizing resources in neural networks
    • Rújan P., Marchand M. Learning by minimizing resources in neural networks. Complex Systems. 3:1989;229-241.
    • (1989) Complex Systems , vol.3 , pp. 229-241
    • Rújan, P.1    Marchand, M.2
  • 63
    • 0025508354 scopus 로고
    • Entropy nets: From decision trees to neural networks
    • Sethi I.K. Entropy nets: from decision trees to neural networks. Proceedings of the IEEE. 78:1990;1605-1613.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1605-1613
    • Sethi, I.K.1
  • 64
    • 0025536869 scopus 로고
    • Comparison between entropy nets and decision tree classifiers
    • San Diego, CA
    • Sethi, I., & Otten, M. (1990). Comparison between entropy nets and decision tree classifiers. In International Joint Conference on Neural Networks (vol. 3, pp. 41-46). San Diego, CA.
    • (1990) In International Joint Conference on Neural Networks , vol.3 , pp. 41-46
    • Sethi, I.1    Otten, M.2
  • 65
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalise
    • Siestma J., Dow R.J.F. Creating artificial neural networks that generalise. Neural Networks. 4:1991;67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Siestma, J.1    Dow, R.J.F.2
  • 66
    • 1542639878 scopus 로고
    • The Upstart algorithm: A method for constructing and training feedforward neural networks
    • Sirat J.A., Nadal J.P. The Upstart algorithm: a method for constructing and training feedforward neural networks. Networks: Computation in Neural Systems. 1:(4):1990;423-438.
    • (1990) Networks: Computation in Neural Systems , vol.1 , Issue.4 , pp. 423-438
    • Sirat, J.A.1    Nadal, J.P.2
  • 67
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: Trading generalization for learning efficiency?
    • Śmieja F.J. Neural network constructive algorithms: trading generalization for learning efficiency? Circuits Systems Signal Processing. 12:(2):1993;331-374.
    • (1993) Circuits Systems Signal Processing , vol.12 , Issue.2 , pp. 331-374
    • Śmieja, F.J.1
  • 68
    • 0029032235 scopus 로고
    • Parallelizing the cascade-correlation algorithm using time warp
    • Springer P.L., Gulati S. Parallelizing the cascade-correlation algorithm using time warp. Neural Networks. 8:(4):1995;571-577.
    • (1995) Neural Networks , vol.8 , Issue.4 , pp. 571-577
    • Springer, P.L.1    Gulati, S.2
  • 69
    • 0031099036 scopus 로고    scopus 로고
    • Cascade ARTMAP: Integrating neural computation and symbolic knowledge processing
    • Tan A.-H. Cascade ARTMAP: integrating neural computation and symbolic knowledge processing. IEEE Transactions on Neural Networks. 8:(2):1997;237-250.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 237-250
    • Tan, A.-H.1
  • 70
    • 0031208466 scopus 로고    scopus 로고
    • An efficient partition of training data set improves speed and accuracy of cascade-correlation algorithm
    • Tetko I.V., Villa A.E.P. An efficient partition of training data set improves speed and accuracy of cascade-correlation algorithm. Neural Processing Letters. 6:(1/2):1997;51-59.
    • (1997) Neural Processing Letters , vol.6 , Issue.1-2 , pp. 51-59
    • Tetko, I.V.1    Villa, A.E.P.2
  • 71
    • 0031212022 scopus 로고    scopus 로고
    • An enhancement of generalization ability in cascade correlation algorithm by avoidance of overfitting/overtraining problem
    • Tetko I.V., Villa A.E.P. An enhancement of generalization ability in cascade correlation algorithm by avoidance of overfitting/overtraining problem. Neural Processing Letters. 6:(1/2):1997;43-50.
    • (1997) Neural Processing Letters , vol.6 , Issue.1-2 , pp. 43-50
    • Tetko, I.V.1    Villa, A.E.P.2
  • 72
    • 0031208607 scopus 로고    scopus 로고
    • Two neural network construction methods
    • Thimm G., Fiesler E. Two neural network construction methods. Neural Processing Letters. 6:(1/2):1997;25-31.
    • (1997) Neural Processing Letters , vol.6 , Issue.1-2 , pp. 25-31
    • Thimm, G.1    Fiesler, E.2
  • 74
    • 22044436835 scopus 로고    scopus 로고
    • Constructing higher order neurons of increasing complexity in cascade networks
    • Treadgold N.K., Gedeon T.D. Constructing higher order neurons of increasing complexity in cascade networks. Lecture Notes in Computer Science. 1416:1998;557-563.
    • (1998) Lecture Notes in Computer Science , vol.1416 , pp. 557-563
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 75
    • 0033332525 scopus 로고    scopus 로고
    • Exploring constructive cascade networks
    • Treadgold N.K., Gedeon T.D. Exploring constructive cascade networks. IEEE-NN. 10:(6):1999;1335.
    • (1999) IEEE-NN , vol.10 , Issue.6 , pp. 1335
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 76
    • 84958054961 scopus 로고    scopus 로고
    • A constructive cascade network with adaptive regularization
    • to appear as Lecture Notes in Computer Science. J. Mira, & J. Sanchez-Andres. Alicante, Spain: Springer-Verlag
    • Treadgold N.K., Gedeon T.D. A constructive cascade network with adaptive regularization. to appear as Lecture Notes in Computer Science Mira J., Sanchez-Andres J. Proceedings of IWANN'99. 1999b;40-49 Springer-Verlag, Alicante, Spain.
    • (1999) Proceedings of IWANN'99 , pp. 40-49
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 77
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff P.E. Incremental induction of decision trees. Machine Learning. 4:1989;161-186.
    • (1989) Machine Learning , vol.4 , pp. 161-186
    • Utgoff, P.E.1
  • 78
    • 0003831906 scopus 로고
    • (Technical report no. UM-CS-1991-010), University of Massachusetts, Amherst, Computer Science
    • Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees (Technical report no. UM-CS-1991-010), University of Massachusetts, Amherst, Computer Science.
    • (1991) Linear Machine Decision Trees
    • Utgoff, P.E.1    Brodley, C.E.2
  • 79
    • 0008864313 scopus 로고    scopus 로고
    • (Technical report no. 97-04). Amherst, MA: Department of Computer Science, University of Massachusetts
    • Utgoff, P. E., & Precup, D. (1997). Constructuve function approximation (Technical report no. 97-04). Amherst, MA: Department of Computer Science, University of Massachusetts.
    • (1997) Constructuve Function Approximation
    • Utgoff, P.E.1    Precup, D.2
  • 81
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff P.E., Berkman N.C., Clouse J.A. Decision tree induction based on efficient tree restructuring. Machine Learning. 29:1997;5-44.
    • (1997) Machine Learning , vol.29 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3
  • 82
    • 0031628574 scopus 로고    scopus 로고
    • DistAI: an interpattern distance-based constructive learning algorithm
    • Anchorage, Alaska
    • Yang, J., Parekh, R., & Honavar, V. (1998). DistAI: an interpattern distance-based constructive learning algorithm. In World Congress on Computational Intelligence (pp. 2208-2213). Anchorage, Alaska.
    • (1998) In World Congress on Computational Intelligence , pp. 2208-2213
    • Yang, J.1    Parekh, R.2    Honavar, V.3
  • 84
    • 0032207884 scopus 로고    scopus 로고
    • CARVE - A constructive algorithm for real-valued examples
    • Young S., Downs T. CARVE - a constructive algorithm for real-valued examples. IEEE Transactions on Neural Networks. 9:(6):1998;1180-1190.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1180-1190
    • Young, S.1    Downs, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.