-
1
-
-
85015066476
-
-
Friedberg, E. C. Nature 2003, 421, 436-440.
-
(2003)
Nature
, vol.421
, pp. 436-440
-
-
Friedberg, E.C.1
-
2
-
-
0242331221
-
-
Christmann, M.; Tomicic, M. T.; Roos, W. P.; Kaina, B. Toxicology 2003, 193, 3-34.
-
(2003)
Toxicology
, vol.193
, pp. 3-34
-
-
Christmann, M.1
Tomicic, M.T.2
Roos, W.P.3
Kaina, B.4
-
4
-
-
0030811508
-
-
Yamada, M.; O'Regan, E.; Brown R.; Karran, P. Nucleic Acids Res. 1997, 25, 491-496.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 491-496
-
-
Yamada, M.1
O'Regan, E.2
Brown, R.3
Karran, P.4
-
5
-
-
9144227402
-
-
Lin, D. P.; Wang, Y.; Sherer, S. J.; Clark, A. B.; Yang, K.; Avdievich, E.; Jin, B.; Werling, U.; Parries, T.; Kurihara, N.; Umar, A.; Kucherlapati, R.; Lipkin, M.; Kunkel T. A.; Edelmann, W. Cancer Res. 2004, 64, 517-522.
-
(2004)
Cancer Res
, vol.64
, pp. 517-522
-
-
Lin, D.P.1
Wang, Y.2
Sherer, S.J.3
Clark, A.B.4
Yang, K.5
Avdievich, E.6
Jin, B.7
Werling, U.8
Parries, T.9
Kurihara, N.10
Umar, A.11
Kucherlapati, R.12
Lipkin, M.13
Kunkel, T.A.14
Edelmann, W.15
-
6
-
-
33646930348
-
-
For examples of chemical approaches to ameliorating cisplatin resistance: Natile, G; Marzilli, L. G. Coord. Chem. Rev. 2006, 250, 1315-1331
-
For examples of chemical approaches to ameliorating cisplatin resistance: Natile, G; Marzilli, L. G. Coord. Chem. Rev. 2006, 250, 1315-1331.
-
-
-
-
7
-
-
33744798490
-
-
Guddneppanavar, R.; Saluta, G.; Kucera, G. L.; Bierbach, U. J. Med. Chem. 2006, 49, 3204-3214.
-
(2006)
J. Med. Chem
, vol.49
, pp. 3204-3214
-
-
Guddneppanavar, R.1
Saluta, G.2
Kucera, G.L.3
Bierbach, U.4
-
9
-
-
0029833916
-
-
Other agents have shown both backbone modification and base oxidation, although not simultaneously with a single activation method. For examples, see
-
Other agents have shown both backbone modification and base oxidation, although not simultaneously with a single activation method. For examples, see: Hall D. B.; Barton, J. K. Nature 1996, 382, 731-735.
-
(1996)
Nature
, vol.382
, pp. 731-735
-
-
Hall, D.B.1
Barton, J.K.2
-
11
-
-
0034829325
-
-
Pérez, J.; Riera, L.; Riera, V.; García-Granda, S.; García-Rodríguez, E. J. Am. Chem. Soc. 2001, 123, 7469-7470.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 7469-7470
-
-
Pérez, J.1
Riera, L.2
Riera, V.3
García-Granda, S.4
García-Rodríguez, E.5
-
12
-
-
27744480112
-
-
Mohler, D. L.; Downs, J. R.; Hurley-Predecki, A. L.; Sallman, J. R.; Gannett P. M.; Shi, X. J. Org. Chem. 2005, 70, 9093-9102.
-
(2005)
J. Org. Chem
, vol.70
, pp. 9093-9102
-
-
Mohler, D.L.1
Downs, J.R.2
Hurley-Predecki, A.L.3
Sallman, J.R.4
Gannett, P.M.5
Shi, X.6
-
14
-
-
0017548298
-
-
Povirk, L. F.; Wübker, W.; Köhnlein, W.; Hutchinson, F. Nucleic Acids Res. 1977, 4, 3573-3580.
-
(1977)
Nucleic Acids Res
, vol.4
, pp. 3573-3580
-
-
Povirk, L.F.1
Wübker, W.2
Köhnlein, W.3
Hutchinson, F.4
-
15
-
-
35949003651
-
-
The number of single- and double-strand cleavage events was determined via the statistical test of Povirk et al, which assumes a Poisson distribution of strand cuts; see ref 7
-
The number of single- and double-strand cleavage events was determined via the statistical test of Povirk et al., which assumes a Poisson distribution of strand cuts; see ref 7.
-
-
-
-
16
-
-
35948990124
-
-
h + 1)/4L: Freifelder, D.; Trumbo, B. Biopolymers 1969, 7, 681], in which h is the maximum separation in base pairs between cuts on opposite strand that produces linear DNA (h = 16) and L is the number of phosphodiester bonds per strand of DNA (4361 for pBR322).
-
h + 1)/4L: Freifelder, D.; Trumbo, B. Biopolymers 1969, 7, 681], in which h is the maximum separation in base pairs between cuts on opposite strand that produces linear DNA (h = 16) and L is the number of phosphodiester bonds per strand of DNA (4361 for pBR322).
-
-
-
-
17
-
-
35948976629
-
-
Densitometry was accomplished with the NIH ImageJ software program. The amount of supercoiled DNA was multiplied by a factor of 1.22 to account for reduced ethidium bromide intercalation into the form I plasmid DNA.
-
Densitometry was accomplished with the NIH ImageJ software program. The amount of supercoiled DNA was multiplied by a factor of 1.22 to account for reduced ethidium bromide intercalation into the form I plasmid DNA.
-
-
-
-
19
-
-
0001234136
-
-
Huston, P.; Espenson, J. H.; Bakac, A. Inorg. Chem. 1992, 31, 720-722.
-
(1992)
Inorg. Chem
, vol.31
, pp. 720-722
-
-
Huston, P.1
Espenson, J.H.2
Bakac, A.3
-
20
-
-
0030575371
-
-
Connolly, T. J.; Baldoví, M. V.; Mohtat, N.; Scaiano, J. C. Tetrahedron Lett. 1996, 37, 4919-4922.
-
(1996)
Tetrahedron Lett
, vol.37
, pp. 4919-4922
-
-
Connolly, T.J.1
Baldoví, M.V.2
Mohtat, N.3
Scaiano, J.C.4
-
21
-
-
0000615140
-
-
Tenhaeff, S. C.; Covert, K. J.; Castellani, M. P.; Grunkemeier, J.; Kunz, C.; Weakley, T. J. R.; Koenig, T.; Tyler, D. R. Organometallics 1993, 12, 5000-5004.
-
(1993)
Organometallics
, vol.12
, pp. 5000-5004
-
-
Tenhaeff, S.C.1
Covert, K.J.2
Castellani, M.P.3
Grunkemeier, J.4
Kunz, C.5
Weakley, T.J.R.6
Koenig, T.7
Tyler, D.R.8
-
23
-
-
0034656377
-
-
Damiani, E.; Kalinska, B.; Canapa, A.; Canestrari, S.; Wozniak, M.; Olmo, E.; Greci, L. Free Radical Biol. Med. 2000, 28, 1257-1265.
-
(2000)
Free Radical Biol. Med
, vol.28
, pp. 1257-1265
-
-
Damiani, E.1
Kalinska, B.2
Canapa, A.3
Canestrari, S.4
Wozniak, M.5
Olmo, E.6
Greci, L.7
-
25
-
-
0025774650
-
-
Frank, B. L.; Worth, L., Jr.; Christner, D. F.; Kozarich, J. W.; Stubbe, J.; Kappen, L. S.; Goldberg, I. H. J. Am. Chem. Soc. 1991, 113, 2271-2275;
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 2271-2275
-
-
Frank, B.L.1
Worth Jr., L.2
Christner, D.F.3
Kozarich, J.W.4
Stubbe, J.5
Kappen, L.S.6
Goldberg, I.H.7
-
27
-
-
11944275553
-
-
Sitlani, A.; Long, E. C.; Pyle, A. M.; Barton, J. K. J. Am. Chem. Soc. 1992, 114, 2302-2312.
-
(1992)
J. Am. Chem. Soc
, vol.114
, pp. 2302-2312
-
-
Sitlani, A.1
Long, E.C.2
Pyle, A.M.3
Barton, J.K.4
-
29
-
-
0019848907
-
-
Giloni, L.; Takeshita, M.; Johnson, F.; Iden, C.; Grollman, A. P. J. Biol. Chem. 1981, 256, 8608-8615.
-
(1981)
J. Biol. Chem
, vol.256
, pp. 8608-8615
-
-
Giloni, L.1
Takeshita, M.2
Johnson, F.3
Iden, C.4
Grollman, A.P.5
-
30
-
-
0031019030
-
-
Meijier, M. M.; Zelenko, O.; Sigman, D. S. J. Am. Chem. Soc. 1997, 119, 1135-1136.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 1135-1136
-
-
Meijier, M.M.1
Zelenko, O.2
Sigman, D.S.3
-
31
-
-
26944455995
-
-
Bales, B. C.; Kodama, T.; Weledji, Y. N.; Pitié, M.; Meunier, B.; Greenberg, M. M. Nucleic Acids Res. 2005, 33, 5371-5379.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 5371-5379
-
-
Bales, B.C.1
Kodama, T.2
Weledji, Y.N.3
Pitié, M.4
Meunier, B.5
Greenberg, M.M.6
-
34
-
-
0029114551
-
-
Hix, S.; Da Silva, M.; Augusto, O. Free Rad. Biol. Med. 1995, 19, 293-301.
-
(1995)
Free Rad. Biol. Med
, vol.19
, pp. 293-301
-
-
Hix, S.1
Da Silva, M.2
Augusto, O.3
-
37
-
-
35948981879
-
-
It has been asserted that methylperoxyl radical is a poor hydrogen atom abstractor, because of the slowness of this reaction. For a detailed discussion of the rates of the processes in Scheme 3, see ref 6
-
It has been asserted that methylperoxyl radical is a poor hydrogen atom abstractor, because of the slowness of this reaction. For a detailed discussion of the rates of the processes in Scheme 3, see ref 6.
-
-
-
-
38
-
-
3042777743
-
-
Interestingly, complexes 1 and 2 are some of the very few Mo complexes that have been found to cause DNA cleavage: Peng, J.; Li, W.; Zhao, X.; Han, Z.; Huang, B. Chem. Res. Chin. Univ. 2004, 20, 6-9.
-
Interestingly, complexes 1 and 2 are some of the very few Mo complexes that have been found to cause DNA cleavage: Peng, J.; Li, W.; Zhao, X.; Han, Z.; Huang, B. Chem. Res. Chin. Univ. 2004, 20, 6-9.
-
-
-
-
39
-
-
20044392883
-
-
Lu, X.-M.; Jiang, L.; Mao, X.-A.; Ye, C.-H.; Lu, J.-F.; Cui, J.-R. Chin. J. Chem. 2005, 23, 781-785.
-
(2005)
Chin. J. Chem
, vol.23
, pp. 781-785
-
-
Lu, X.-M.1
Jiang, L.2
Mao, X.-A.3
Ye, C.-H.4
Lu, J.-F.5
Cui, J.-R.6
|