-
1
-
-
24944460598
-
Shelterin: The protein complex that shapes and safeguards human telomeres
-
de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19:2100-10.
-
(2005)
Genes Dev
, vol.19
, pp. 2100-2110
-
-
de Lange, T.1
-
2
-
-
23744462053
-
Telomeres: What's new at your end?
-
LeBel C, Wellinger RJ. Telomeres: What's new at your end? J Cell Sci 2005; 118:2785-8.
-
(2005)
J Cell Sci
, vol.118
, pp. 2785-2788
-
-
LeBel, C.1
Wellinger, R.J.2
-
3
-
-
0035313820
-
Telomeric chromatin: Replicating and wrapping up chromosome ends
-
Shore D. Telomeric chromatin: Replicating and wrapping up chromosome ends. Curr Opin Genet Dev 2001; 11:189-98.
-
(2001)
Curr Opin Genet Dev
, vol.11
, pp. 189-198
-
-
Shore, D.1
-
5
-
-
3543056880
-
Functional links between telomeres and proteins of the DNA-damage response
-
d'Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004; 18:1781-99.
-
(2004)
Genes Dev
, vol.18
, pp. 1781-1799
-
-
d'Adda di Fagagna, F.1
Teo, S.H.2
Jackson, S.P.3
-
6
-
-
1642523697
-
Indecent exposure: When telomeres become uncapped
-
Ferreira MG, Miller KM, Cooper JP. Indecent exposure: When telomeres become uncapped. Mol Cell 2004; 13:7-18.
-
(2004)
Mol Cell
, vol.13
, pp. 7-18
-
-
Ferreira, M.G.1
Miller, K.M.2
Cooper, J.P.3
-
7
-
-
0842287637
-
Those dam-aged telomeres!
-
Harrington L. Those dam-aged telomeres! Curr Opin Genet Dev 2004; 14:22-8.
-
(2004)
Curr Opin Genet Dev
, vol.14
, pp. 22-28
-
-
Harrington, L.1
-
8
-
-
33646831821
-
Telomeres, chromosome instability and cancer
-
Bailey SM, Murnane JP. Telomeres, chromosome instability and cancer. Nucleic Acids Res 2006; 34:2408-17.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 2408-2417
-
-
Bailey, S.M.1
Murnane, J.P.2
-
9
-
-
0042386051
-
Telomere dysfunction and the initiation of genome instability
-
Feldser DM, Hackett JA, Greider CW. Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer 2003; 3:623-7.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 623-627
-
-
Feldser, D.M.1
Hackett, J.A.2
Greider, C.W.3
-
10
-
-
33747882534
-
Telomeres and chromosome instability
-
Murnane JP. Telomeres and chromosome instability. DNA Repair (Amst) 2006; 5:1082-92.
-
(2006)
DNA Repair (Amst)
, vol.5
, pp. 1082-1092
-
-
Murnane, J.P.1
-
11
-
-
0027421043
-
Loss of a yeast telomere: Arrest, recovery, and chromosome loss
-
Sandell LL, Zakian VA. Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell 1993; 75:729-39.
-
(1993)
Cell
, vol.75
, pp. 729-739
-
-
Sandell, L.L.1
Zakian, V.A.2
-
12
-
-
0041704526
-
Telomere maintenance and DNA replication: How closely are these two connected?
-
Chakhparonian M, Wellinger RJ. Telomere maintenance and DNA replication: How closely are these two connected? Trends Genet 2003; 19:439-46.
-
(2003)
Trends Genet
, vol.19
, pp. 439-446
-
-
Chakhparonian, M.1
Wellinger, R.J.2
-
13
-
-
0842346436
-
Beginning to understand the end of the chromosome
-
Cech TR. Beginning to understand the end of the chromosome. Cell 2004; 116:273-9.
-
(2004)
Cell
, vol.116
, pp. 273-279
-
-
Cech, T.R.1
-
14
-
-
33746211311
-
Telomere length homeostasis
-
Hug N, Lingner J. Telomere length homeostasis. Chromosoma 2006; 115(6):413-425.
-
(2006)
Chromosoma
, vol.115
, Issue.6
, pp. 413-425
-
-
Hug, N.1
Lingner, J.2
-
15
-
-
33646501933
-
The maintenance and masking of chromosome termini
-
Bertuch AA, Lundblad V. The maintenance and masking of chromosome termini. Curr Opin Cell Biol 2006; 18:247-53.
-
(2006)
Curr Opin Cell Biol
, vol.18
, pp. 247-253
-
-
Bertuch, A.A.1
Lundblad, V.2
-
16
-
-
0038188748
-
Telomere replication: An Est fest
-
Lundblad V. Telomere replication: An Est fest. Curr Biol 2003; 13(11):R439-41.
-
(2003)
Curr Biol
, vol.13
, Issue.11
-
-
Lundblad, V.1
-
17
-
-
0038360921
-
Telomerase: What are the Est proteins doing?
-
Taggart AK, Zakian VA. Telomerase: What are the Est proteins doing? Curr Opin Cell Biol 2003; 15:275-80.
-
(2003)
Curr Opin Cell Biol
, vol.15
, pp. 275-280
-
-
Taggart, A.K.1
Zakian, V.A.2
-
18
-
-
0029128798
-
Telomerase and DNA end replication: No longer a lagging strand problem?
-
Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: No longer a lagging strand problem? Science 1995; 269:1533-4.
-
(1995)
Science
, vol.269
, pp. 1533-1534
-
-
Lingner, J.1
Cooper, J.P.2
Cech, T.R.3
-
20
-
-
0027298574
-
Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid
-
Wellinger RJ, Wolf AJ, Zakian VA. Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol Cell Biol 1993; 13:4057-65.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 4057-4065
-
-
Wellinger, R.J.1
Wolf, A.J.2
Zakian, V.A.3
-
21
-
-
0027509950
-
Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase
-
Wellinger RJ, Wolf AJ, Zakian VA. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 1993; 72:51-60.
-
(1993)
Cell
, vol.72
, pp. 51-60
-
-
Wellinger, R.J.1
Wolf, A.J.2
Zakian, V.A.3
-
22
-
-
0030460748
-
Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase
-
Dionne I, Wellinger RJ. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc Natl Acad Sci USA 1996; 93:13902-7.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 13902-13907
-
-
Dionne, I.1
Wellinger, R.J.2
-
24
-
-
0028822203
-
Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
-
Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 1995; 15:6128-38.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 6128-6138
-
-
Garvik, B.1
Carson, M.2
Hartwell, L.3
-
25
-
-
33749059184
-
DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase
-
Vodenicharov MD, Wellinger RJ. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell 2006; 24:127-37.
-
(2006)
Mol Cell
, vol.24
, pp. 127-137
-
-
Vodenicharov, M.D.1
Wellinger, R.J.2
-
26
-
-
0027212282
-
Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint
-
Weinert TA, Hartwell LH. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 1993; 134:63-80.
-
(1993)
Genetics
, vol.134
, pp. 63-80
-
-
Weinert, T.A.1
Hartwell, L.H.2
-
27
-
-
0344441890
-
-
d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426:194-8.
-
d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426:194-8.
-
-
-
-
28
-
-
0042420304
-
DNA damage foci at dysfunctional telomeres
-
Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003; 13:1549-56.
-
(2003)
Curr Biol
, vol.13
, pp. 1549-1556
-
-
Takai, H.1
Smogorzewska, A.2
de Lange, T.3
-
29
-
-
0036864626
-
Transient stability of DNA ends allows non-homologous end joining to precede homologous recombination
-
Frank-Vaillant M, Marcand S. Transient stability of DNA ends allows non-homologous end joining to precede homologous recombination. Mol Cell 2002; 10:1189-99.
-
(2002)
Mol Cell
, vol.10
, pp. 1189-1199
-
-
Frank-Vaillant, M.1
Marcand, S.2
-
30
-
-
11244269445
-
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
-
Aylon Y, Liefshitz B, Kupiec M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. Embo J 2004; 23:4868-75.
-
(2004)
Embo J
, vol.23
, pp. 4868-4875
-
-
Aylon, Y.1
Liefshitz, B.2
Kupiec, M.3
-
31
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM and others. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 2004; 431:1011-7.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
Fiorani, S.5
Carotenuto, W.6
Liberi, G.7
Bressan, D.8
Wan, L.9
Hollingsworth, N.M.10
and others11
-
32
-
-
0031737085
-
Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae
-
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243.
-
(1998)
Microbiol Mol Biol Rev
, vol.62
, pp. 1191-1243
-
-
Mendenhall, M.D.1
Hodge, A.E.2
-
34
-
-
0032403147
-
Processing of telomeric DNA ends requires the passage of a replication fork
-
Dionne I, Wellinger RJ. Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res 1998; 26:5365-71.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 5365-5371
-
-
Dionne, I.1
Wellinger, R.J.2
-
36
-
-
0024285032
-
Time of replication of yeast centromeres and telomeres
-
McCarroll RM, Fangman WL. Time of replication of yeast centromeres and telomeres. Cell 1988; 54:505-13.
-
(1988)
Cell
, vol.54
, pp. 505-513
-
-
McCarroll, R.M.1
Fangman, W.L.2
-
37
-
-
0035806955
-
Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere
-
Diede SJ, Gottschling DE. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr Biol 2001; 11:1336-40.
-
(2001)
Curr Biol
, vol.11
, pp. 1336-1340
-
-
Diede, S.J.1
Gottschling, D.E.2
-
38
-
-
0037047643
-
Est1p as a cell cycle-regulated activator of telomere-bound telomerase
-
Taggart AK, Teng SC, Zakian VA. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 2002; 297:1023-6.
-
(2002)
Science
, vol.297
, pp. 1023-1026
-
-
Taggart, A.K.1
Teng, S.C.2
Zakian, V.A.3
-
39
-
-
33750431337
-
Regulation of telomere elongation by the cyclin-dependent kinase CDK1
-
Frank CJ, Hyde M, Greider CW. Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 2006; 24:423-32.
-
(2006)
Mol Cell
, vol.24
, pp. 423-432
-
-
Frank, C.J.1
Hyde, M.2
Greider, C.W.3
-
41
-
-
0036245193
-
Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance
-
Lee SE, Bressan DA, Petrini JH, Haber JE. Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst) 2002; 1:27-40.
-
(2002)
DNA Repair (Amst)
, vol.1
, pp. 27-40
-
-
Lee, S.E.1
Bressan, D.A.2
Petrini, J.H.3
Haber, J.E.4
-
42
-
-
13944265075
-
Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae
-
Takata H, Tanaka Y, Matsuura A. Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell 2005; 17:573-83.
-
(2005)
Mol Cell
, vol.17
, pp. 573-583
-
-
Takata, H.1
Tanaka, Y.2
Matsuura, A.3
-
43
-
-
34547813672
-
-
Goudsouzian LK, Tuzon CT, Zakian VA. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Mol Cell 2006; 24:603-10.
-
Goudsouzian LK, Tuzon CT, Zakian VA. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Mol Cell 2006; 24:603-10.
-
-
-
-
44
-
-
0342561644
-
Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres
-
Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 2000; 25:347-52.
-
(2000)
Nat Genet
, vol.25
, pp. 347-352
-
-
Zhu, X.D.1
Kuster, B.2
Mann, M.3
Petrini, J.H.4
de Lange, T.5
-
45
-
-
2942644725
-
The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex
-
Larrivee M, LeBel C, Wellinger RJ. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 2004; 18:1391-6.
-
(2004)
Genes Dev
, vol.18
, pp. 1391-1396
-
-
Larrivee, M.1
LeBel, C.2
Wellinger, R.J.3
-
46
-
-
34548231839
-
When CDK1 rides the telomere cycle
-
Teixeira MT, Gilson E. When CDK1 rides the telomere cycle. Mol Cell 2006; 24:491-2.
-
(2006)
Mol Cell
, vol.24
, pp. 491-492
-
-
Teixeira, M.T.1
Gilson, E.2
-
47
-
-
0036959004
-
Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease
-
Parenteau J, Wellinger RJ. Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease. Genetics 2002; 162:1583-94.
-
(2002)
Genetics
, vol.162
, pp. 1583-1594
-
-
Parenteau, J.1
Wellinger, R.J.2
-
48
-
-
31544466516
-
Human telomeres have different overhang sizes at leading versus lagging strands
-
Chai W, Du Q, Shay JW, Wright WE. Human telomeres have different overhang sizes at leading versus lagging strands. Mol Cell 2006; 21:427-35.
-
(2006)
Mol Cell
, vol.21
, pp. 427-435
-
-
Chai, W.1
Du, Q.2
Shay, J.W.3
Wright, W.E.4
-
49
-
-
0242287930
-
Hiding at the ends of yeast chromosomes: Telomeres, nucleases and checkpoint pathways
-
Lydall D. Hiding at the ends of yeast chromosomes: Telomeres, nucleases and checkpoint pathways. J Cell Sci 2003; 116:4057-65.
-
(2003)
J Cell Sci
, vol.116
, pp. 4057-4065
-
-
Lydall, D.1
-
50
-
-
0036163019
-
Differential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase)
-
Lewis LK, Karthikeyan G, Westmoreland JW, Resnick MA. Differential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase). Genetics 2002; 160:49-62.
-
(2002)
Genetics
, vol.160
, pp. 49-62
-
-
Lewis, L.K.1
Karthikeyan, G.2
Westmoreland, J.W.3
Resnick, M.A.4
-
51
-
-
0032931844
-
The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance
-
Moreau S, Ferguson JR, Symington LS. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 1999; 19:556-66.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 556-566
-
-
Moreau, S.1
Ferguson, J.R.2
Symington, L.S.3
-
52
-
-
7644232348
-
Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway
-
Nakada D, Hirano Y, Sugimoto K. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway. Mol Cell Biol 2004; 24:10016-25.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 10016-10025
-
-
Nakada, D.1
Hirano, Y.2
Sugimoto, K.3
-
53
-
-
33745270023
-
MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants
-
Foster SS, Zubko MK, Guillard S, Lydall D. MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants. DNA Repair (Amst) 2006; 5:840-51.
-
(2006)
DNA Repair (Amst)
, vol.5
, pp. 840-851
-
-
Foster, S.S.1
Zubko, M.K.2
Guillard, S.3
Lydall, D.4
-
54
-
-
0032793298
-
Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae
-
Ritchie KB, Mallory JC, Petes TD. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:6065-75.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 6065-6075
-
-
Ritchie, K.B.1
Mallory, J.C.2
Petes, T.D.3
-
55
-
-
33845669591
-
The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation
-
Tseng SF, Lin JJ, Teng SC. The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res 2006; 34:6327-36.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 6327-6336
-
-
Tseng, S.F.1
Lin, J.J.2
Teng, S.C.3
-
56
-
-
33646178457
-
A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator
-
Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, Guillard S, Partington M, Zubko MK, Krogan NJ and others. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 2006; 124:1155-68.
-
(2006)
Cell
, vol.124
, pp. 1155-1168
-
-
Downey, M.1
Houlsworth, R.2
Maringele, L.3
Rollie, A.4
Brehme, M.5
Galicia, S.6
Guillard, S.7
Partington, M.8
Zubko, M.K.9
Krogan, N.J.10
and others11
-
57
-
-
10944233962
-
Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair
-
van Attikum H, Fritsch O, Hohn B, Gasser SM. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 2004; 119:777-88.
-
(2004)
Cell
, vol.119
, pp. 777-788
-
-
van Attikum, H.1
Fritsch, O.2
Hohn, B.3
Gasser, S.M.4
-
58
-
-
33748272677
-
Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage
-
Papamichos-Chronakis M, Krebs JE, Peterson CL. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 2006; 20:2437-49.
-
(2006)
Genes Dev
, vol.20
, pp. 2437-2449
-
-
Papamichos-Chronakis, M.1
Krebs, J.E.2
Peterson, C.L.3
-
59
-
-
0024973811
-
A mutant with a defect in telomere elongation leads to senescence in yeast
-
Lundblad V, Szostak JW. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 1989; 57:633-43.
-
(1989)
Cell
, vol.57
, pp. 633-643
-
-
Lundblad, V.1
Szostak, J.W.2
-
60
-
-
0027266758
-
An alternative pathway for yeast telomere maintenance rescues est1- senescence
-
Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 1993; 73:347-60.
-
(1993)
Cell
, vol.73
, pp. 347-360
-
-
Lundblad, V.1
Blackburn, E.H.2
-
61
-
-
33745474120
-
Break-induced replication and recombinational telomere elongation in yeast
-
McEachern MJ, Haber JE. Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 2006; 75:111-35.
-
(2006)
Annu Rev Biochem
, vol.75
, pp. 111-135
-
-
McEachern, M.J.1
Haber, J.E.2
-
62
-
-
0035839132
-
Telomere dysfunction increases mutation rate and genomic instability
-
Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell 2001; 106:275-86.
-
(2001)
Cell
, vol.106
, pp. 275-286
-
-
Hackett, J.A.1
Feldser, D.M.2
Greider, C.W.3
-
63
-
-
0036677405
-
MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae
-
Enomoto S, Glowczewski L, Berman J. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol Biol Cell 2002; 13:2626-38.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 2626-2638
-
-
Enomoto, S.1
Glowczewski, L.2
Berman, J.3
-
64
-
-
0037341611
-
Short telomeres induce a DNA damage response in Saccharomyces cerevisiae
-
IJpma AS, Greider CW. Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:987-1001.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 987-1001
-
-
IJpma, A.S.1
Greider, C.W.2
-
65
-
-
0035016368
-
Short telomeres in yeast are highly recombinogenic
-
McEachern MJ, Iyer S. Short telomeres in yeast are highly recombinogenic. Mol Cell 2001; 7:695-704.
-
(2001)
Mol Cell
, vol.7
, pp. 695-704
-
-
McEachern, M.J.1
Iyer, S.2
-
66
-
-
2642516988
-
Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast
-
Pennaneach V, Kolodner RD. Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat Genet 2004; 36:612-7.
-
(2004)
Nat Genet
, vol.36
, pp. 612-617
-
-
Pennaneach, V.1
Kolodner, R.D.2
-
67
-
-
0037093318
-
Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III
-
Caspari T, Murray JM, Carr AM. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev 2002; 16:1195-208.
-
(2002)
Genes Dev
, vol.16
, pp. 1195-1208
-
-
Caspari, T.1
Murray, J.M.2
Carr, A.M.3
-
68
-
-
0344197749
-
Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells
-
Grandin N, Charbonneau M. Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol Cell Biol 2003; 23:9162-77.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 9162-9177
-
-
Grandin, N.1
Charbonneau, M.2
-
69
-
-
0033553536
-
Mammalian telomeres end in a large duplex loop
-
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop. Cell 1999; 97:503-14.
-
(1999)
Cell
, vol.97
, pp. 503-514
-
-
Griffith, J.D.1
Comeau, L.2
Rosenfield, S.3
Stansel, R.M.4
Bianchi, A.5
Moss, H.6
de Lange, T.7
-
70
-
-
33750801681
-
The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres
-
Verdun RE, Karlseder J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 2006; 127:709-20.
-
(2006)
Cell
, vol.127
, pp. 709-720
-
-
Verdun, R.E.1
Karlseder, J.2
-
71
-
-
0038246291
-
The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae
-
Grandin N, Charbonneau M. The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:3721-34.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3721-3734
-
-
Grandin, N.1
Charbonneau, M.2
-
72
-
-
7044232011
-
Homologous recombination generates T-loop-sized deletions at human telomeres
-
Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004; 119:355-68.
-
(2004)
Cell
, vol.119
, pp. 355-368
-
-
Wang, R.C.1
Smogorzewska, A.2
de Lange, T.3
-
74
-
-
18944387709
-
Recombination at long mutant telomeres produces tiny single- and double-stranded telomeric circles
-
Groff-Vindman C, Cesare AJ, Natarajan S, Griffith JD, McEachern MJ. Recombination at long mutant telomeres produces tiny single- and double-stranded telomeric circles. Mol Cell Biol 2005; 25:4406-12.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4406-4412
-
-
Groff-Vindman, C.1
Cesare, A.J.2
Natarajan, S.3
Griffith, J.D.4
McEachern, M.J.5
-
75
-
-
7644237444
-
Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops
-
Cesare AJ, Griffith JD. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol 2004; 24:9948-57.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9948-9957
-
-
Cesare, A.J.1
Griffith, J.D.2
-
76
-
-
33745744815
-
Telomerase- and capping-independent yeast survivors with alternate telomere states
-
Larrivee M, Wellinger RJ. Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat Cell Biol 2006; 8:741-7.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 741-747
-
-
Larrivee, M.1
Wellinger, R.J.2
-
77
-
-
13844311437
-
Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae
-
Lin CY, Chang HH, Wu KJ, Tseng SF, Lin CC, Lin CP, Teng SC. Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. Eukaryot Cell 2005; 4:327-36.
-
(2005)
Eukaryot Cell
, vol.4
, pp. 327-336
-
-
Lin, C.Y.1
Chang, H.H.2
Wu, K.J.3
Tseng, S.F.4
Lin, C.C.5
Lin, C.P.6
Teng, S.C.7
-
78
-
-
0036269549
-
Recombinational telomere elongation promoted by DNA circles
-
Natarajan S, McEachern MJ. Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol 2002; 22:4512-21.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 4512-4521
-
-
Natarajan, S.1
McEachern, M.J.2
-
79
-
-
33847421831
-
Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA
-
Grandin N, Charbonneau M. Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA. Nucleic Acids Res 2007; 35:822-38.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 822-838
-
-
Grandin, N.1
Charbonneau, M.2
-
80
-
-
0032189952
-
The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage
-
Vialard JE, Gilbert CS, Green CM, Lowndes NF. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. Embo J 1998; 17:5679-88.
-
(1998)
Embo J
, vol.17
, pp. 5679-5688
-
-
Vialard, J.E.1
Gilbert, C.S.2
Green, C.M.3
Lowndes, N.F.4
-
81
-
-
0033179985
-
Cdc2 phosphorylation of Crb2 is required for reestablishing cell cycle progression after the damage checkpoint
-
Esashi F, Yanagida M. Cdc2 phosphorylation of Crb2 is required for reestablishing cell cycle progression after the damage checkpoint. Mol Cell 1999; 4:167-74.
-
(1999)
Mol Cell
, vol.4
, pp. 167-174
-
-
Esashi, F.1
Yanagida, M.2
-
82
-
-
0034665462
-
Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity
-
Liberi G, Chiolo I, Pellicioli A, Lopes M, Plevani P, Muzi-Falconi M, Foiani M. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. Embo J 2000; 19:5027-38.
-
(2000)
Embo J
, vol.19
, pp. 5027-5038
-
-
Liberi, G.1
Chiolo, I.2
Pellicioli, A.3
Lopes, M.4
Plevani, P.5
Muzi-Falconi, M.6
Foiani, M.7
-
83
-
-
0026539144
-
cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication
-
Dutta A, Stillman B. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. Embo J 1992; 11:2189-99.
-
(1992)
Embo J
, vol.11
, pp. 2189-2199
-
-
Dutta, A.1
Stillman, B.2
-
85
-
-
2042534735
-
Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states
-
Teixeira MT, Arneric M, Sperisen P, Lingner J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 2004; 117:323-35.
-
(2004)
Cell
, vol.117
, pp. 323-335
-
-
Teixeira, M.T.1
Arneric, M.2
Sperisen, P.3
Lingner, J.4
|