-
1
-
-
0001793657
-
Dynamics of stochastic approximations
-
Lectures Notes in Mathematics, Springer-Verlag, New York
-
M. Benaïm, Dynamics of stochastic approximations, in Le Seminaire de Probabilites, Lectures Notes in Mathematics, Vol. 1709, Springer-Verlag, New York, 1999, pp. 1-68.
-
(1999)
Le Seminaire de Probabilites
, vol.1709
, pp. 1-68
-
-
Benaïm, M.1
-
4
-
-
0030145382
-
Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
-
N. Cesa-Bianchi, P. M. Long, andM. K. Warmuth, Worst-case quadratic loss bounds for prediction using linear functions and gradient descent, IEEE Trans. Neural Networks 7(3) (1996), 604-619.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, Issue.3
, pp. 604-619
-
-
Cesa-Bianchi, N.1
Long, P.M.2
Warmuth, A.K.3
-
6
-
-
0036436325
-
Best choices for regularization parameters in learning theory
-
F. Cucker and S. Smale, Best choices for regularization parameters in learning theory, Found. Comput. Math. 2(4) (2002), 413-428.
-
(2002)
Found. Comput. Math.
, vol.2
, Issue.4
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
7
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 29(1) (2002), 1-49.
-
(2002)
Bull. Amer. Math. Soc.
, vol.29
, Issue.1
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
8
-
-
24944432318
-
Model selection for regularized least-squares algorithm in learning theory
-
E. De Vito, A. Caponnetto, and L. Rosasco, Model selection for regularized least-squares algorithm in learning theory, Found. Comput. Math. 5(1), 59-85.
-
Found. Comput. Math.
, vol.5
, Issue.1
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
11
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13(1) (1999), 1-50.
-
(1999)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
12
-
-
0008738007
-
Stochastic approximation from ergodic sample for linear regression
-
L. Györfi, Stochastic approximation from ergodic sample for linear regression, Z. Wahrsch. Verw. Gebiete 54 (1980), 47-55.
-
(1980)
Z. Wahrsch. Verw. Gebiete
, vol.54
, pp. 47-55
-
-
Györfi, L.1
-
13
-
-
0003624357
-
-
Springer-Verlag, New York
-
L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, 2002.
-
(2002)
A Distribution-free Theory of Nonparametric Regression
-
-
Györfi, L.1
Kohler, M.2
Krzyzak, A.3
Walk, H.4
-
14
-
-
0001079593
-
-
J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statist. 23 (1952), 462-466.
-
(1952)
Ann. Math. Statist.
, vol.23
, pp. 462-466
-
-
-
15
-
-
3543110224
-
Online learning with kernels
-
J. Kivinen, A. J. Smola, and R. C. Williamson, Online learning with kernels, IEEE Trans. Signal Process. 52(8) (2004), 2165-2176.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
17
-
-
0000631438
-
Remarks on inequalities for probabilities of large deviations
-
I. F. Pinelis and A. I. Sakhanenko, Remarks on inequalities for probabilities of large deviations, Theory Probab. Appl. 30(1) (1985), 143-148.
-
(1985)
Theory Probab. Appl.
, vol.30
, Issue.1
, pp. 143-148
-
-
Pinelis, I.F.1
Sakhanenko, A.I.2
-
18
-
-
0000016172
-
A stochastic approximation method
-
H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22(3) (1951), 400-407.
-
(1951)
Ann. Math. Statist.
, vol.22
, Issue.3
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
19
-
-
0002686402
-
A convergence theorem for nonnegative almost supermartingales and some applications
-
(J. S. Rustagi, editor), Academic Press, New York
-
H. Robbins and D. Siegmund, A convergence theorem for nonnegative almost supermartingales and some applications, in (J. S. Rustagi, editor), Optimizing Methods in Statistics, Academic Press, New York, 1971, pp. 233-257.
-
(1971)
Optimizing Methods in Statistics
, pp. 233-257
-
-
Robbins, H.1
Siegmund, D.2
-
20
-
-
27844555491
-
Shannon sampling ii. Connections to learning theory
-
submitted
-
S. Smale and D.-X. Zhou, Shannon sampling ii. connections to learning theory, Appl. Comput. Harmonic Anal. (2005), submitted.
-
(2005)
Appl. Comput. Harmonic Anal.
-
-
Smale, S.1
Zhou, D.-X.2
-
21
-
-
1442313216
-
On the almost sure rate of convergence of linear stochastic approximation algorithms
-
V. B. Tadic, On the almost sure rate of convergence of linear stochastic approximation algorithms, IEEE Trans. Inform. Theory 50 (2004), 401-409.
-
(2004)
IEEE Trans. Inform. Theory
, vol.50
, pp. 401-409
-
-
Tadic, V.B.1
-
22
-
-
0009224070
-
-
Lecture Notes in Mathematics, Springer-Verlag, Berlin
-
Y Yurinsky, Sums and Gaussian Vectors, Lecture Notes in Mathematics, Vol. 1617, Springer-Verlag, Berlin, 1995.
-
(1995)
Sums and Gaussian Vectors
, vol.1617
-
-
Yurinsky, Y.1
-
23
-
-
0042879446
-
Leave-one-out bounds for kernel methods
-
T. Zhang, Leave-one-out bounds for kernel methods, Neural Comput. 15 (2003), 1397-1437.
-
(2003)
Neural Comput.
, vol.15
, pp. 1397-1437
-
-
Zhang, T.1
-
24
-
-
1942417711
-
Online convex programming and generalized infinitesimal gradient ascent
-
CMU-CS-03-110, School of Computer Science, Carnegie Mellon University
-
M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Technical report, CMU-CS-03-110, School of Computer Science, Carnegie Mellon University, 2003.
-
(2003)
Technical Report
-
-
Zinkevich, M.1
|