메뉴 건너뛰기




Volumn 6, Issue 2, 2006, Pages 145-170

Online learning algorithms

Author keywords

Online learning; Regularization; Reproducing Kernel Hilbert Spaces; Stochastic approximation

Indexed keywords

ONLINE LEARNING; ONLINE LEARNING ALGORITHMS; POTENTIAL FUNCTION; REGULARIZATION; REPRODUCING KERNEL HILBERT SPACES; STOCHASTIC APPROXIMATIONS; STOCHASTIC GRADIENT METHODS; UPPER BOUND;

EID: 33744740175     PISSN: 16153375     EISSN: 16153383     Source Type: Journal    
DOI: 10.1007/s10208-004-0160-z     Document Type: Article
Times cited : (134)

References (24)
  • 1
    • 0001793657 scopus 로고    scopus 로고
    • Dynamics of stochastic approximations
    • Lectures Notes in Mathematics, Springer-Verlag, New York
    • M. Benaïm, Dynamics of stochastic approximations, in Le Seminaire de Probabilites, Lectures Notes in Mathematics, Vol. 1709, Springer-Verlag, New York, 1999, pp. 1-68.
    • (1999) Le Seminaire de Probabilites , vol.1709 , pp. 1-68
    • Benaïm, M.1
  • 4
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
    • N. Cesa-Bianchi, P. M. Long, andM. K. Warmuth, Worst-case quadratic loss bounds for prediction using linear functions and gradient descent, IEEE Trans. Neural Networks 7(3) (1996), 604-619.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.3 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.M.2    Warmuth, A.K.3
  • 6
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory
    • F. Cucker and S. Smale, Best choices for regularization parameters in learning theory, Found. Comput. Math. 2(4) (2002), 413-428.
    • (2002) Found. Comput. Math. , vol.2 , Issue.4 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 7
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 29(1) (2002), 1-49.
    • (2002) Bull. Amer. Math. Soc. , vol.29 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 8
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • E. De Vito, A. Caponnetto, and L. Rosasco, Model selection for regularized least-squares algorithm in learning theory, Found. Comput. Math. 5(1), 59-85.
    • Found. Comput. Math. , vol.5 , Issue.1 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 11
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13(1) (1999), 1-50.
    • (1999) Adv. Comput. Math. , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 12
    • 0008738007 scopus 로고
    • Stochastic approximation from ergodic sample for linear regression
    • L. Györfi, Stochastic approximation from ergodic sample for linear regression, Z. Wahrsch. Verw. Gebiete 54 (1980), 47-55.
    • (1980) Z. Wahrsch. Verw. Gebiete , vol.54 , pp. 47-55
    • Györfi, L.1
  • 14
    • 0001079593 scopus 로고
    • J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statist. 23 (1952), 462-466.
    • (1952) Ann. Math. Statist. , vol.23 , pp. 462-466
  • 17
    • 0000631438 scopus 로고
    • Remarks on inequalities for probabilities of large deviations
    • I. F. Pinelis and A. I. Sakhanenko, Remarks on inequalities for probabilities of large deviations, Theory Probab. Appl. 30(1) (1985), 143-148.
    • (1985) Theory Probab. Appl. , vol.30 , Issue.1 , pp. 143-148
    • Pinelis, I.F.1    Sakhanenko, A.I.2
  • 18
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22(3) (1951), 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 19
    • 0002686402 scopus 로고
    • A convergence theorem for nonnegative almost supermartingales and some applications
    • (J. S. Rustagi, editor), Academic Press, New York
    • H. Robbins and D. Siegmund, A convergence theorem for nonnegative almost supermartingales and some applications, in (J. S. Rustagi, editor), Optimizing Methods in Statistics, Academic Press, New York, 1971, pp. 233-257.
    • (1971) Optimizing Methods in Statistics , pp. 233-257
    • Robbins, H.1    Siegmund, D.2
  • 20
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling ii. Connections to learning theory
    • submitted
    • S. Smale and D.-X. Zhou, Shannon sampling ii. connections to learning theory, Appl. Comput. Harmonic Anal. (2005), submitted.
    • (2005) Appl. Comput. Harmonic Anal.
    • Smale, S.1    Zhou, D.-X.2
  • 21
    • 1442313216 scopus 로고    scopus 로고
    • On the almost sure rate of convergence of linear stochastic approximation algorithms
    • V. B. Tadic, On the almost sure rate of convergence of linear stochastic approximation algorithms, IEEE Trans. Inform. Theory 50 (2004), 401-409.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 401-409
    • Tadic, V.B.1
  • 22
    • 0009224070 scopus 로고
    • Lecture Notes in Mathematics, Springer-Verlag, Berlin
    • Y Yurinsky, Sums and Gaussian Vectors, Lecture Notes in Mathematics, Vol. 1617, Springer-Verlag, Berlin, 1995.
    • (1995) Sums and Gaussian Vectors , vol.1617
    • Yurinsky, Y.1
  • 23
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • T. Zhang, Leave-one-out bounds for kernel methods, Neural Comput. 15 (2003), 1397-1437.
    • (2003) Neural Comput. , vol.15 , pp. 1397-1437
    • Zhang, T.1
  • 24
    • 1942417711 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • CMU-CS-03-110, School of Computer Science, Carnegie Mellon University
    • M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Technical report, CMU-CS-03-110, School of Computer Science, Carnegie Mellon University, 2003.
    • (2003) Technical Report
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.