메뉴 건너뛰기




Volumn 11, Issue 4, 2007, Pages 398-405

Optimal search-based gene subset selection for gene array cancer classification

Author keywords

Genetics; Medical diagnosis; Optimization methods; Pattern classification; Search methods

Indexed keywords

CANCER MARKER GENES; GENE ARRAY-BASED CANCER CLASSIFICATION; OPTIMAL SEARCH-BASED SUBSET SELECTION METHODS;

EID: 34547126221     PISSN: 10897771     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITB.2007.892693     Document Type: Article
Times cited : (41)

References (41)
  • 1
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Y. Lu and J. W. Han, "Cancer classification using gene expression data," Inf. Syst., vol. 28, pp. 243-268, 2003.
    • (2003) Inf. Syst , vol.28 , pp. 243-268
    • Lu, Y.1    Han, J.W.2
  • 2
    • 0035224384 scopus 로고    scopus 로고
    • Feature selection for DNA methylation based cancer classification
    • F. Model, P. Adorján, A. Olek, and C. Piepenbrock, "Feature selection for DNA methylation based cancer classification," Bioinformatics, vol. 17, pp. 157-164, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 157-164
    • Model, F.1    Adorján, P.2    Olek, A.3    Piepenbrock, C.4
  • 3
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature selection for classification," Intell. Data Anal., vol. 1, no. 3, pp. 131-156, 1997.
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 4
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • San Jose, CA
    • K. Kira and L. Rendell, "The feature selection problem: Traditional methods and a new algorithm," in Proc. 10th Nat. Conf. Artif. Intell., San Jose, CA, 1992.
    • (1992) Proc. 10th Nat. Conf. Artif. Intell
    • Kira, K.1    Rendell, L.2
  • 8
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu, "Consistency-based search in feature selection," Artif. Intell., vol. 151, pp. 155-176, 2003.
    • (2003) Artif. Intell , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 9
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M. A. Hall, "Correlation-based feature selection for discrete and numeric class machine learning," in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 359-366.
    • (2000) Proc. 17th Int. Conf. Mach. Learn , pp. 359-366
    • Hall, M.A.1
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, pp. 273-324, 1997.
    • (1997) Artif. Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 13
    • 0038329332 scopus 로고    scopus 로고
    • An improved branch and bound algorithm for feature selection
    • X.W. Chen, "An improved branch and bound algorithm for feature selection," Pattern Recognit. Lett., vol. 24, pp. 1925-1933, 2003.
    • (2003) Pattern Recognit. Lett , vol.24 , pp. 1925-1933
    • Chen, X.W.1
  • 14
    • 0028547556 scopus 로고
    • Floating search methods in featureselection
    • P. Pudil, J. Novovicova, and J. Kittler, "Floating search methods in featureselection," Pattern Recognit. Lett., vol. 15, pp. 1119-1125, 1994.
    • (1994) Pattern Recognit. Lett , vol.15 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 15
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.J.2    Vecchi, M.P.3
  • 16
    • 0242324457 scopus 로고    scopus 로고
    • Feature selection and classification - a probabilistic wrapper approach
    • H. Liu and R. Setiono, "Feature selection and classification - a probabilistic wrapper approach," in Proc. 9th Int. Conf. Ind. Eng. Appl. AIES, 1996, pp. 419-424.
    • (1996) Proc. 9th Int. Conf. Ind. Eng. Appl. AIES , pp. 419-424
    • Liu, H.1    Setiono, R.2
  • 19
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, pp. 245-271, 1997.
    • (1997) Artif. Intell , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 21
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. P. Speed, "Comparison of discrimination methods for the classification of tumors using gene expression data," J. Amer. Stat. Assoc., vol. 97, pp. 77-87, 2002.
    • (2002) J. Amer. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 22
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J.Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, pp. 389-422, 2002.
    • (2002) Mach. Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 23
    • 0035826360 scopus 로고    scopus 로고
    • Identifying marker genes in transcription profiling data using a mixture of feature relevant experts
    • M. L. Chow, E. J. Moler, and I. S. Mian, "Identifying marker genes in transcription profiling data using a mixture of feature relevant experts," Physiol. Genomics, vol. 5, pp. 99-111, 2001.
    • (2001) Physiol. Genomics , vol.5 , pp. 99-111
    • Chow, M.L.1    Moler, E.J.2    Mian, I.S.3
  • 24
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • L. P. Li, C.R. Weinberg, T.A. Darden, and L.G. Pedersen, "Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method," Bioinformatics, vol. 17, pp. 1131-1142, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.P.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 25
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • M. M. Xiong, X. Z. Fang, and J. Y. Zhao, "Biomarker identification by feature wrappers," Genome Res., vol. 11, pp. 1878-1887, 2001.
    • (2001) Genome Res , vol.11 , pp. 1878-1887
    • Xiong, M.M.1    Fang, X.Z.2    Zhao, J.Y.3
  • 26
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • T. H. Bø and I. Jonassen, "New feature subset selection procedures for classification of expression profiles," Genome Biol., vol. 3, pp. 0017.1-0017.11, 2002.
    • (2002) Genome Biol , vol.3
    • Bø, T.H.1    Jonassen, I.2
  • 27
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study of feature selection and classification methods using gene expression profiles and proteomic patterns
    • H. Liu, J. Li, and L. Wong, "A comparative study of feature selection and classification methods using gene expression profiles and proteomic patterns," Genome Informat., vol. 13, pp. 51-60, 2002.
    • (2002) Genome Informat , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 28
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data," in Proc. Comput. Syst. Bioinformat., 2003, pp. 523-528.
    • (2003) Proc. Comput. Syst. Bioinformat , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 29
    • 85142160781 scopus 로고    scopus 로고
    • C. H. Ooi and and P. Tan, Genetic algorithms applied to multi-class prediction for the analysis of gene expression data, Bioinformatics 19, pp. 37-44, 2003.
    • C. H. Ooi and and P. Tan, "Genetic algorithms applied to multi-class prediction for the analysis of gene expression data," Bioinformatics vol. 19, pp. 37-44, 2003.
  • 30
    • 85142128243 scopus 로고    scopus 로고
    • Y. Saeys, S. Degroeve, D. Aeyels, Y. Van de Peer, and P. Roue, Fast feature selection using a simple estimation of distribution algorithm: A case study on splice site prediction, Bioinformatics, 19, pp. ii179-ii188, 2003.
    • Y. Saeys, S. Degroeve, D. Aeyels, Y. Van de Peer, and P. Roue, "Fast feature selection using a simple estimation of distribution algorithm: A case study on splice site prediction," Bioinformatics, vol. 19, pp. ii179-ii188, 2003.
  • 31
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • T. Li, C. L. Zhang, and M. Ogihara, "A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression," Bioinformatics, vol. 20, pp. 2429-2437, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.L.2    Ogihara, M.3
  • 32
    • 1142263111 scopus 로고    scopus 로고
    • Classification of individual lung cancer cell lines based on DNA methylation markers - Use of linear discriminant analysis and artificial neural networks
    • A. M. Marchevsky, J. A. Tsou, and I. A. Laird Offringa, "Classification of individual lung cancer cell lines based on DNA methylation markers - Use of linear discriminant analysis and artificial neural networks," J.Mol. Diagn., vol. 6, pp. 28-36, 2004.
    • (2004) J.Mol. Diagn , vol.6 , pp. 28-36
    • Marchevsky, A.M.1    Tsou, J.A.2    Laird Offringa, I.A.3
  • 33
    • 0032098609 scopus 로고    scopus 로고
    • A machine learning approach to inductive query by examples: An experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing
    • H. C. Chen, G. Shankaranarayanan, L. L. She, and A. Iyer, "A machine learning approach to inductive query by examples: An experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing," J. Amer. Soc. Inf. Sci., vol. 49, pp. 693-705, 1998.
    • (1998) J. Amer. Soc. Inf. Sci , vol.49 , pp. 693-705
    • Chen, H.C.1    Shankaranarayanan, G.2    She, L.L.3    Iyer, A.4
  • 34
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature-selection
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature-selection," Pattern Recognit. Lett., vol. 10, pp. 335-347, 1989.
    • (1989) Pattern Recognit. Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 35
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • H. B. Zhang and G. Y. Sun, "Feature selection using tabu search method," Pattern Recognit., vol. 35, pp. 701-711, 2002.
    • (2002) Pattern Recognit , vol.35 , pp. 701-711
    • Zhang, H.B.1    Sun, G.Y.2
  • 36
    • 34547137091 scopus 로고    scopus 로고
    • N. Christianini and and J. Shawe-Taylor, An Introduction to Support Vector Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.
    • N. Christianini and and J. Shawe-Taylor, An Introduction to Support Vector Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.
  • 37
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine, "Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays," Proc. Nat. Acad. Sci. U.S.A., vol. 96, pp. 6745-6750, 1999.
    • (1999) Proc. Nat. Acad. Sci. U.S.A , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 38
    • 0012177324 scopus 로고
    • WEKA: The Waikato environment for knowledge analysis
    • Waikato, New Zealand
    • S. R. Garner, "WEKA: The Waikato environment for knowledge analysis," in Proc. N. Z. Comput. Sci. Res. Stud. Conf., Waikato, New Zealand, 1995, pp. 57-64.
    • (1995) Proc. N. Z. Comput. Sci. Res. Stud. Conf , pp. 57-64
    • Garner, S.R.1
  • 39
    • 0037470044 scopus 로고    scopus 로고
    • Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene
    • X. Zhang, T. Zhu, Y. Chen, H. C.Mertani, K. O. Lee, and P. E. Lobie, "Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene," J. Biol. Chem., vol. 278, pp. 7580-7590, 2003.
    • (2003) J. Biol. Chem , vol.278 , pp. 7580-7590
    • Zhang, X.1    Zhu, T.2    Chen, Y.3    Mertani, H.C.4    Lee, K.O.5    Lobie, P.E.6
  • 40
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • L. Ein-Dor, I.Kela, G. Getz, D. Givol, and E.Domany, "Outcome signature genes in breast cancer: Is there a unique set?," Bioinformatics, vol. 21, pp. 171-178, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 41
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • R. L. Somorjai, B. Dolenko, and R. Baumgartner, "Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions," Bioinformatics, vol. 19, pp. 1484-1491, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.