메뉴 건너뛰기




Volumn 5, Issue 4, 2006, Pages 280-288

Using genomics and proteomics to investigate mechanisms of transcriptional silencing in Saccharomyces cerevisiae

Author keywords

Chromosomal boundary elements; Downstream inhibition model of silencing; Histone modifications; RNA polymerase II; Silent chromatin; Sir proteins

Indexed keywords

DNA BINDING PROTEIN; DNA METHYLTRANSFERASE; GENOMIC DNA; HEAT SHOCK PROTEIN; HISTONE ACETYLTRANSFERASE; HISTONE DEACETYLASE; HISTONE H2B; HISTONE H3; HISTONE H4; MESSENGER RNA; RAP1 PROTEIN; RIBOSOME DNA; RNA POLYMERASE II; SILENT INFORMATION REGULATOR PROTEIN; SILENT INFORMATION REGULATOR PROTEIN 2; TRANSCRIPTION FACTOR IIB; TRANSCRIPTION FACTOR SAGA; TRANSFER RNA; HISTONE;

EID: 33947116424     PISSN: 14739550     EISSN: 14774062     Source Type: Journal    
DOI: 10.1093/bfgp/ell035     Document Type: Review
Times cited : (8)

References (83)
  • 1
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Ann Rev Biochem 2003;72: 481-516.
    • (2003) Ann Rev Biochem , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 2
    • 0034234638 scopus 로고    scopus 로고
    • Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes
    • Smith RL, Johnson AD. Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 2000;25:325-30.
    • (2000) Trends Biochem Sci , vol.25 , pp. 325-330
    • Smith, R.L.1    Johnson, A.D.2
  • 3
    • 0029040527 scopus 로고
    • Yeast silencers can act as orientation-dependent gene inactivation centers that respond to environmental signals
    • Shei G-J, Broach JR. Yeast silencers can act as orientation-dependent gene inactivation centers that respond to environmental signals. Mol Cell Biol 1995;15:3496-506.
    • (1995) Mol Cell Biol , vol.15 , pp. 3496-3506
    • Shei, G.-J.1    Broach, J.R.2
  • 4
    • 0036923691 scopus 로고    scopus 로고
    • Regulation of subtelomeric silencing during stress response
    • Ai W, Bertram PG, Tsang CK, et al. Regulation of subtelomeric silencing during stress response. Mol Cell 2002;10:1295-305.
    • (2002) Mol Cell , vol.10 , pp. 1295-1305
    • Ai, W.1    Bertram, P.G.2    Tsang, C.K.3
  • 5
    • 0023340731 scopus 로고
    • Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae
    • Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987;116:9-22.
    • (1987) Genetics , vol.116 , pp. 9-22
    • Rine, J.1    Herskowitz, I.2
  • 6
    • 0029922959 scopus 로고    scopus 로고
    • Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing
    • Triolo T, Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 1996;381:251-3.
    • (1996) Nature , vol.381 , pp. 251-253
    • Triolo, T.1    Sternglanz, R.2
  • 7
    • 2942733647 scopus 로고    scopus 로고
    • A model for stepwise assembly of heterochromatin in yeast
    • Moazed D, Rudner AD, Huang J, et al. A model for stepwise assembly of heterochromatin in yeast. Novartis Found Symp 2004;259:48-56.
    • (2004) Novartis Found Symp , vol.259 , pp. 48-56
    • Moazed, D.1    Rudner, A.D.2    Huang, J.3
  • 8
    • 18944384374 scopus 로고    scopus 로고
    • A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin
    • Rudner AD, Hall BE, Ellenberger T, et al. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin. Mol Cell Biol 2005;25:4514-28.
    • (2005) Mol Cell Biol , vol.25 , pp. 4514-4528
    • Rudner, A.D.1    Hall, B.E.2    Ellenberger, T.3
  • 9
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Cell 2002;32: 378-83.
    • (2002) Cell , vol.32 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 10
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S-I, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.-I.1    Armstrong, C.M.2    Kaeberlein, M.3
  • 11
    • 0036261650 scopus 로고    scopus 로고
    • Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation
    • Hoppe GJ, Tanny JC, Rudner AD, et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 2002;22: 4167-80.
    • (2002) Mol Cell Biol , vol.22 , pp. 4167-4180
    • Hoppe, G.J.1    Tanny, J.C.2    Rudner, A.D.3
  • 12
    • 19344377042 scopus 로고    scopus 로고
    • Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation
    • Liou GG, Tanny JC, Kruger RG, et al. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 2005;121:515-27.
    • (2005) Cell , vol.121 , pp. 515-527
    • Liou, G.G.1    Tanny, J.C.2    Kruger, R.G.3
  • 13
    • 0035902582 scopus 로고    scopus 로고
    • Sir3-dependent assembly of supramolecular chromatin structures in vitro
    • Georgel PT, Palacios DeBeer MA, Pietz G, et al. Sir3-dependent assembly of supramolecular chromatin structures in vitro. Proc Natl Acad Sci USA 2001;98:8584-9.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8584-8589
    • Georgel, P.T.1    Palacios DeBeer, M.A.2    Pietz, G.3
  • 14
    • 1942503933 scopus 로고    scopus 로고
    • Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins
    • Taddei A, Hediger F, Neumann FR, et al. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 2004;23: 1301-12.
    • (2004) EMBO J , vol.23 , pp. 1301-1312
    • Taddei, A.1    Hediger, F.2    Neumann, F.R.3
  • 15
    • 0035861202 scopus 로고    scopus 로고
    • The molecular biology of the SIR proteins
    • Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene 2001;279:1-16.
    • (2001) Gene , vol.279 , pp. 1-16
    • Gasser, S.M.1    Cockell, M.M.2
  • 16
    • 0025201982 scopus 로고
    • Position effect at S. cerevisiae telomeres: Reversible repression of pol II transcription
    • Gottschling DE, Aparicio OM, Billington BL, et al. Position effect at S. cerevisiae telomeres: Reversible repression of pol II transcription. Cell 1990;63:751-62.
    • (1990) Cell , vol.63 , pp. 751-762
    • Gottschling, D.E.1    Aparicio, O.M.2    Billington, B.L.3
  • 17
    • 0141817943 scopus 로고    scopus 로고
    • The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin
    • Sharp JA, Krawitz DC, Gardner KA, et al. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev 2003,17:2356-61.
    • (2003) Genes Dev , vol.17 , pp. 2356-2361
    • Sharp, J.A.1    Krawitz, D.C.2    Gardner, K.A.3
  • 18
    • 11144296359 scopus 로고    scopus 로고
    • Sir-mediated repression can occur independently of chromosomal and subnuclear contexts
    • Gartenberg MR, Neumann FR, Laroche T, et al. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 2004;119: 955-67.
    • (2004) Cell , vol.119 , pp. 955-967
    • Gartenberg, M.R.1    Neumann, F.R.2    Laroche, T.3
  • 19
    • 23344438897 scopus 로고    scopus 로고
    • Global loss of Set1-mediated H3 Lys4 trimethylation is associated with silencing defects in Saccharomyces cerevisiae
    • Fingerman IM, Wu CL, Wilson BD, et al. Global loss of Set1-mediated H3 Lys4 trimethylation is associated with silencing defects in Saccharomyces cerevisiae. J Biol Chem 2005;280:28761-5.
    • (2005) J Biol Chem , vol.280 , pp. 28761-28765
    • Fingerman, I.M.1    Wu, C.L.2    Wilson, B.D.3
  • 20
    • 0037098044 scopus 로고    scopus 로고
    • Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association
    • Ng HH, Feng Q, Wang H, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002;16:1518-27.
    • (2002) Genes Dev , vol.16 , pp. 1518-1527
    • Ng, H.H.1    Feng, Q.2    Wang, H.3
  • 21
    • 0037019333 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
    • Sun Z-W, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002;418:104-8.
    • (2002) Nature , vol.418 , pp. 104-108
    • Sun, Z.-W.1    Allis, C.D.2
  • 22
    • 0036682364 scopus 로고    scopus 로고
    • Gene silencing: Trans-histone regulatory pathway in chromatin
    • Briggs SD, Xiao T, Sun ZW, et al. Gene silencing: Trans-histone regulatory pathway in chromatin. Nature 2002;418:498.
    • (2002) Nature , vol.418 , pp. 498
    • Briggs, S.D.1    Xiao, T.2    Sun, Z.W.3
  • 23
    • 0033638234 scopus 로고    scopus 로고
    • A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR
    • Dhillon N, Kamakaka RT. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell 2000;6:769-80.
    • (2000) Mol Cell , vol.6 , pp. 769-780
    • Dhillon, N.1    Kamakaka, R.T.2
  • 24
    • 0032814843 scopus 로고    scopus 로고
    • A general requirement for the Sm3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae
    • Sun ZW, Hampsey M. A general requirement for the Sm3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 1999;152: 921-32.
    • (1999) Genetics , vol.152 , pp. 921-932
    • Sun, Z.W.1    Hampsey, M.2
  • 25
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002;32:370-7.
    • (2002) Nat Genet , vol.32 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 26
    • 0027192267 scopus 로고
    • Transcriptional silencing in yeast is associated with reduced nucleosome acetylation
    • Braunstein M, Rose AB, Holmes SG, et al. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 1993;7:592-604.
    • (1993) Genes Dev , vol.7 , pp. 592-604
    • Braunstein, M.1    Rose, A.B.2    Holmes, S.G.3
  • 27
    • 26844511498 scopus 로고    scopus 로고
    • Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin
    • Raisner RM, Hartley PD, Meneghini MD, et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 2005;123:233-48.
    • (2005) Cell , vol.123 , pp. 233-248
    • Raisner, R.M.1    Hartley, P.D.2    Meneghini, M.D.3
  • 28
    • 0037423930 scopus 로고    scopus 로고
    • Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin
    • Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003;112: 725-36.
    • (2003) Cell , vol.112 , pp. 725-736
    • Meneghini, M.D.1    Wu, M.2    Madhani, H.D.3
  • 29
    • 26844489856 scopus 로고    scopus 로고
    • Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss
    • Zhang H, Roberts DN, Cairns BR. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 2005;123:219-31.
    • (2005) Cell , vol.123 , pp. 219-231
    • Zhang, H.1    Roberts, D.N.2    Cairns, B.R.3
  • 30
    • 33645002813 scopus 로고    scopus 로고
    • Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast
    • Millar CB, Xu F, Zhang K, et al. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 2006;20:711-22.
    • (2006) Genes Dev , vol.20 , pp. 711-722
    • Millar, C.B.1    Xu, F.2    Zhang, K.3
  • 31
    • 33645001675 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4
    • Keogh MC, Mennella TA, Sawa C, et al. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev 2006;20:660-5.
    • (2006) Genes Dev , vol.20 , pp. 660-665
    • Keogh, M.C.1    Mennella, T.A.2    Sawa, C.3
  • 32
    • 33644999042 scopus 로고    scopus 로고
    • Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae
    • Babiarz JE, Halley JE, Rine J. Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 2006;20:700-10.
    • (2006) Genes Dev , vol.20 , pp. 700-710
    • Babiarz, J.E.1    Halley, J.E.2    Rine, J.3
  • 33
    • 0037077178 scopus 로고    scopus 로고
    • Dot1p modulates silencing in yeast by methylation of the nucleosome core
    • van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002;109:745-56.
    • (2002) Cell , vol.109 , pp. 745-756
    • van Leeuwen, F.1    Gafken, P.R.2    Gottschling, D.E.3
  • 34
    • 0033786367 scopus 로고    scopus 로고
    • Role for the silencing protein Dot1 in meiotic checkpoint control
    • San-Segundo PA, Roeder GS. Role for the silencing protein Dot1 in meiotic checkpoint control. Mol Biol Cell 2000;11:3601-15.
    • (2000) Mol Biol Cell , vol.11 , pp. 3601-3615
    • San-Segundo, P.A.1    Roeder, G.S.2
  • 35
    • 0034934774 scopus 로고    scopus 로고
    • Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association
    • Lieb JD, Liu X, Botstein D, et al. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 2001;28:327-34.
    • (2001) Nat Genet , vol.28 , pp. 327-334
    • Lieb, J.D.1    Liu, X.2    Botstein, D.3
  • 36
    • 0035861492 scopus 로고    scopus 로고
    • Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins
    • Wyrick JJ, Aparicio JG, Chen T, et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins. Science 2001;294:2357-60.
    • (2001) Science , vol.294 , pp. 2357-2360
    • Wyrick, J.J.1    Aparicio, J.G.2    Chen, T.3
  • 37
    • 13944270691 scopus 로고    scopus 로고
    • Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing
    • Emre NC, Ingvarsdottir K, Wyce A, et al. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell 2005;17:585-94.
    • (2005) Mol Cell , vol.17 , pp. 585-594
    • Emre, N.C.1    Ingvarsdottir, K.2    Wyce, A.3
  • 38
    • 18944372806 scopus 로고    scopus 로고
    • Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations
    • Pirrotta V, Gross DS. Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations. Mol Cell 2005;18:395-8.
    • (2005) Mol Cell , vol.18 , pp. 395-398
    • Pirrotta, V.1    Gross, D.S.2
  • 39
    • 19344372948 scopus 로고    scopus 로고
    • A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin
    • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2004;2:E131.
    • (2004) PLoS Biol , vol.2
    • Kobor, M.S.1    Venkatasubrahmanyam, S.2    Meneghini, M.D.3
  • 40
    • 0348184963 scopus 로고    scopus 로고
    • ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
    • Mizuguchi G, Shen X, Landry J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2004;303: 343-8.
    • (2004) Science , vol.303 , pp. 343-348
    • Mizuguchi, G.1    Shen, X.2    Landry, J.3
  • 41
    • 21844454183 scopus 로고    scopus 로고
    • Heterochromatin formation involves changes in histone modifications over multiple cell generations
    • Katan-Khaykovich Y, Struhl K. Heterochromatin formation involves changes in histone modifications over multiple cell generations. Embo J 2005;24:2138-49.
    • (2005) Embo J , vol.24 , pp. 2138-2149
    • Katan-Khaykovich, Y.1    Struhl, K.2
  • 42
    • 0033558878 scopus 로고    scopus 로고
    • The boundaries of the silenced HMR domain of Saccharomyces cerevisiae
    • Donze D, Adams CR, Rine J, et al. The boundaries of the silenced HMR domain of Saccharomyces cerevisiae. Genes Dev 1999;13:698-708.
    • (1999) Genes Dev , vol.13 , pp. 698-708
    • Donze, D.1    Adams, C.R.2    Rine, J.3
  • 43
    • 0035254535 scopus 로고    scopus 로고
    • RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae
    • Donze D, Kamakaka RT. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 2001;20: 520-31.
    • (2001) EMBO J , vol.20 , pp. 520-531
    • Donze, D.1    Kamakaka, R.T.2
  • 44
    • 1342346506 scopus 로고    scopus 로고
    • Barrier proteins remodel and modify chromatin to restrict silenced domains
    • Oki M, Valenzuela L, Chiba T, et al. Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol Cell Biol 2004;24:1956-67.
    • (2004) Mol Cell Biol , vol.24 , pp. 1956-1967
    • Oki, M.1    Valenzuela, L.2    Chiba, T.3
  • 45
    • 24044461066 scopus 로고    scopus 로고
    • Barrier function at HMR
    • Oki M, Kamakaka RT. Barrier function at HMR. Mol Cell 2005;19:707-16.
    • (2005) Mol Cell , vol.19 , pp. 707-716
    • Oki, M.1    Kamakaka, R.T.2
  • 46
    • 0037291760 scopus 로고    scopus 로고
    • Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries
    • Ladumer AG, Inouye C, Jain R, et al. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 2003;11: 365-76.
    • (2003) Mol Cell , vol.11 , pp. 365-376
    • Ladumer, A.G.1    Inouye, C.2    Jain, R.3
  • 47
    • 0032744760 scopus 로고    scopus 로고
    • The yeast HML 1 silencer defines a heterochromatin domain boundary by directional establishment of silencing
    • Bi B, Braunstein M, Shei G-J, et al. The yeast HML 1 silencer defines a heterochromatin domain boundary by directional establishment of silencing. Proc Natl Acad Sci USA 1999;96:11934-9.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 11934-11939
    • Bi, B.1    Braunstein, M.2    Shei, G.-J.3
  • 48
    • 33748887256 scopus 로고    scopus 로고
    • Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers
    • Zou Y, Yu Q, Bi X. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers. Mol Cell Biol 2006;26:7806-19.
    • (2006) Mol Cell Biol , vol.26 , pp. 7806-7819
    • Zou, Y.1    Yu, Q.2    Bi, X.3
  • 49
    • 0033572683 scopus 로고    scopus 로고
    • SIR, repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin
    • Sekinger EA, Gross DS. SIR, repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin. EMBO J 1999;18:7041-55.
    • (1999) EMBO J , vol.18 , pp. 7041-7055
    • Sekinger, E.A.1    Gross, D.S.2
  • 50
    • 17644367887 scopus 로고    scopus 로고
    • Proteomic and genomic characterization of chromatin complexes at a boundary
    • Tackett AJ, Dilworth DJ, Davey MJ, et al. Proteomic and genomic characterization of chromatin complexes at a boundary. J Cell Biol 2005;169:35-47.
    • (2005) J Cell Biol , vol.169 , pp. 35-47
    • Tackett, A.J.1    Dilworth, D.J.2    Davey, M.J.3
  • 51
    • 0031056907 scopus 로고    scopus 로고
    • An unusual form of transcriptional silencing in yeast ribosomal DNA
    • Smith JS, Boeke JD. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 1997;11:241-54.
    • (1997) Genes Dev , vol.11 , pp. 241-254
    • Smith, J.S.1    Boeke, J.D.2
  • 52
    • 0031044789 scopus 로고    scopus 로고
    • Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast
    • Bryk M, Banerjee M, Murphy M, et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 1997;11:255-69.
    • (1997) Genes Dev , vol.11 , pp. 255-269
    • Bryk, M.1    Banerjee, M.2    Murphy, M.3
  • 53
    • 0037184938 scopus 로고    scopus 로고
    • RNA polymerase I propagates unidirectional spreading of rDNA silent chromatin
    • Buck S, Sandmeier J, Smith J. RNA polymerase I propagates unidirectional spreading of rDNA silent chromatin. Cell 2002;111:1003-14.
    • (2002) Cell , vol.111 , pp. 1003-1014
    • Buck, S.1    Sandmeier, J.2    Smith, J.3
  • 54
    • 0043172404 scopus 로고    scopus 로고
    • Silencing in yeast rDNA chromatin: Reciprocal relationship in gene expression between RNA polymerase I and II
    • Cioci F, Vu L, Eliason K, et al. Silencing in yeast rDNA chromatin: reciprocal relationship in gene expression between RNA polymerase I and II. Mol Cell 2003;12:135-45.
    • (2003) Mol Cell , vol.12 , pp. 135-145
    • Cioci, F.1    Vu, L.2    Eliason, K.3
  • 55
    • 0020181398 scopus 로고
    • The regulation of yeast mating-type chromatin structure by SIR: An action at a distance affecting both transcription and transposition
    • Nasmyth KA. The regulation of yeast mating-type chromatin structure by SIR: An action at a distance affecting both transcription and transposition. Cell 1982; 30:567-78.
    • (1982) Cell , vol.30 , pp. 567-578
    • Nasmyth, K.A.1
  • 56
    • 0031813153 scopus 로고    scopus 로고
    • High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLa
    • Weiss K, Simpson RT. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLa. Mol Cell Biol 1998;18: 5392-403.
    • (1998) Mol Cell Biol , vol.18 , pp. 5392-5403
    • Weiss, K.1    Simpson, R.T.2
  • 57
    • 0024409266 scopus 로고
    • Differential repair of UV damage in Saccharomyces cerevisiae
    • Terleth C, Sluis CAv, Putte Pvd. Differential repair of UV damage in Saccharomyces cerevisiae. Nucleic Acids Res 1989; 17:4433-9.
    • (1989) Nucleic Acids Res , vol.17 , pp. 4433-4439
    • Terleth, C.1    Sluis, C.Av.2    Putte, Pvd.3
  • 58
    • 0026552380 scopus 로고
    • Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo
    • Gottschling DE. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci USA 1992;89:4062-5.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 4062-4065
    • Gottschling, D.E.1
  • 59
    • 0026591791 scopus 로고
    • Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: A novel in vivo probe for chromatin structure of yeast
    • Singh J, Klar AJS. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: A novel in vivo probe for chromatin structure of yeast. Genes Dev 1992;6:186-96.
    • (1992) Genes Dev , vol.6 , pp. 186-196
    • Singh, J.1    Klar, A.J.S.2
  • 60
    • 0028304836 scopus 로고
    • Silencers and domains of generalized repression
    • Loo S, Rine J. Silencers and domains of generalized repression. Science 1994;264:1768-71.
    • (1994) Science , vol.264 , pp. 1768-1771
    • Loo, S.1    Rine, J.2
  • 61
    • 0027458443 scopus 로고
    • Conditional silencing: The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene
    • Lee S, Gross DS. Conditional silencing: The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Mol Cell Biol 1993;13:727-38.
    • (1993) Mol Cell Biol , vol.13 , pp. 727-738
    • Lee, S.1    Gross, D.S.2
  • 62
    • 0035805063 scopus 로고    scopus 로고
    • Silenced chromatin is permissive to activator binding and PIC recruitment
    • Sekinger EA, Gross DS. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 2001;105:403-14.
    • (2001) Cell , vol.105 , pp. 403-414
    • Sekinger, E.A.1    Gross, D.S.2
  • 63
    • 0028822276 scopus 로고
    • HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites
    • Shopland LS, Hirayoshi K, Fernandes M, et al. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev 1995;9: 2756-69.
    • (1995) Genes Dev , vol.9 , pp. 2756-2769
    • Shopland, L.S.1    Hirayoshi, K.2    Fernandes, M.3
  • 64
    • 0033499772 scopus 로고    scopus 로고
    • High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa
    • Ravindra A, Weiss K, Simpson RT. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa. Mol Cell Biol 1999;19:7944-50.
    • (1999) Mol Cell Biol , vol.19 , pp. 7944-7950
    • Ravindra, A.1    Weiss, K.2    Simpson, R.T.3
  • 65
    • 0020105240 scopus 로고
    • Directionality of yeast mating-type interconversion
    • Klar AJ, Hicks JB, Strathern JN. Directionality of yeast mating-type interconversion. Cell 1982;28:551-61.
    • (1982) Cell , vol.28 , pp. 551-561
    • Klar, A.J.1    Hicks, J.B.2    Strathern, J.N.3
  • 66
    • 0029942759 scopus 로고    scopus 로고
    • Silencers are required for inheritance of the repressed state in yeast
    • Holmes SG, Broach JR. Silencers are required for inheritance of the repressed state in yeast. Genes Dev 1996; 10:1021-32.
    • (1996) Genes Dev , vol.10 , pp. 1021-1032
    • Holmes, S.G.1    Broach, J.R.2
  • 67
    • 0034050798 scopus 로고    scopus 로고
    • Yeast heterochromatin is a dynamic structure that requires silencers continuously
    • Cheng T-H, Gartenberg MR. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev 2000;14:452-63.
    • (2000) Genes Dev , vol.14 , pp. 452-463
    • Cheng, T.-H.1    Gartenberg, M.R.2
  • 68
    • 0029985540 scopus 로고    scopus 로고
    • The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci
    • Zou S, Ke N, Kim JM, et al. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev 1996;10:634-45.
    • (1996) Genes Dev , vol.10 , pp. 634-645
    • Zou, S.1    Ke, N.2    Kim, J.M.3
  • 69
    • 11844303478 scopus 로고    scopus 로고
    • Mechanism of transcriptional silencing in yeast
    • Chen L, Widom J. Mechanism of transcriptional silencing in yeast. Cell 2005;120:37-48.
    • (2005) Cell , vol.120 , pp. 37-48
    • Chen, L.1    Widom, J.2
  • 70
    • 33751504083 scopus 로고    scopus 로고
    • Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase
    • (in press)
    • Steinmetz EJ, Warren CL, Kuehner JN, et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 2006;24: (in press).
    • (2006) Mol Cell , vol.24
    • Steinmetz, E.J.1    Warren, C.L.2    Kuehner, J.N.3
  • 72
    • 0035868764 scopus 로고    scopus 로고
    • Acetylation of TAFI68, a submit of TIF-IB/SL1, activates RNA polymerase I transcription
    • Muth V, Nadaud S, Grummt I, et al. Acetylation of TAFI68, a submit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001;20:1353-62.
    • (2001) EMBO J , vol.20 , pp. 1353-1362
    • Muth, V.1    Nadaud, S.2    Grummt, I.3
  • 73
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2a promotes cell survival under stress
    • Luo J, Nikolaev A, Imai S, et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell 2001;107: 137-48.
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1    Nikolaev, A.2    Imai, S.3
  • 74
    • 0035913903 scopus 로고    scopus 로고
    • hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, Dessain S, Ng Eaton E, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-59.
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1    Dessain, S.2    Ng Eaton, E.3
  • 75
    • 0035833718 scopus 로고    scopus 로고
    • A Drosophila Polycomb group complex includes Zeste and dTAFII proteins
    • Saurin AJ, Shao Z, Erdjument-Bromage H, et al. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 2001;412:655-60.
    • (2001) Nature , vol.412 , pp. 655-660
    • Saurin, A.J.1    Shao, Z.2    Erdjument-Bromage, H.3
  • 77
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan NJ, Cagney G, Yu H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006;440:637-43.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.3
  • 78
    • 0035499363 scopus 로고    scopus 로고
    • Sir proteins as transcriptional repressors
    • Gross DS. Sir proteins as transcriptional repressors. Trends Biochem Sci 2001;26:685-6.
    • (2001) Trends Biochem Sci , vol.26 , pp. 685-686
    • Gross, D.S.1
  • 79
    • 0032498273 scopus 로고    scopus 로고
    • FACT, a factor that facilitates transcript elongation through nucleosomes
    • Orphanides G, LeRoy G, Chang CH, et al. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 1998;92:105-16.
    • (1998) Cell , vol.92 , pp. 105-116
    • Orphanides, G.1    LeRoy, G.2    Chang, C.H.3
  • 80
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh BP, Reid J, Liu WF, et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 2005;121: 913-23.
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1    Reid, J.2    Liu, W.F.3
  • 81
    • 0033986862 scopus 로고    scopus 로고
    • Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II
    • Rodriguez CR, Cho EJ, Keogh MC, et al. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 2000;20: 104-12.
    • (2000) Mol Cell Biol , vol.20 , pp. 104-112
    • Rodriguez, C.R.1    Cho, E.J.2    Keogh, M.C.3
  • 82
    • 0030474371 scopus 로고    scopus 로고
    • GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion
    • Straight AF, Belmont AS, Robinett CC, et al. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 1996;6:1599-608.
    • (1996) Curr Biol , vol.6 , pp. 1599-1608
    • Straight, A.F.1    Belmont, A.S.2    Robinett, C.C.3
  • 83
    • 0034841844 scopus 로고    scopus 로고
    • The tandem affinity purification (TAP) method: A general procedure of protein complex purification
    • Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 2001; 24:218-29.
    • (2001) Methods , vol.24 , pp. 218-229
    • Puig, O.1    Caspary, F.2    Rigaut, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.