-
2
-
-
0004281797
-
-
University Science Books, Mill Valley, California, For recent reviews on metallo active site models, see the following thematic issues: Biomimetic Inorganic Chemistry, Chem. Rev., 2004, 104, 347-1200 and Inorganic and Bioinorganic Mechanism, Chem. Rev., 2005, 105, 1917-2722
-
S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, California, 1994
-
(1994)
Principles of Bioinorganic Chemistry
-
-
Lippard, S.J.1
Berg, J.M.2
-
3
-
-
35048859123
-
-
ed. J. Harrowfield and J. Vicens, Springer, Dordrecht, Holland, ch. 13
-
O. Reinaud, Y. Le Mest and I. Jabin, in Calixarenes Enter The Nanoworld, ed. J. Harrowfield, and, J. Vicens, Springer, Dordrecht, Holland, 2006, ch. 13
-
(2006)
Calixarenes Enter the Nanoworld
-
-
Reinaud, O.1
Le Mest, Y.2
Jabin In, I.3
-
10
-
-
0032538471
-
-
S. Blanchard L. Le Clainche M.-N. Rager B. Chansou J. P. Tuchagues A. Duprat Y. Le Mest O. Reinaud Angew. Chem., Int. Ed. 1998 37 2732
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 2732
-
-
Blanchard, S.1
Le Clainche, L.2
Rager, M.-N.3
Chansou, B.4
Tuchagues, J.P.5
Duprat, A.6
Le Mest, Y.7
Reinaud, O.8
-
27
-
-
33748329750
-
-
R,R′ stands for a tren ligand with R and R′ N-substituents
-
X. Zeng D. Coquière A. Alenda E. Garrier T. Prangé Y. Li O. Reinaud I. Jabin Chem.-Eur. J. 2006 12 6393
-
(2006)
Chem.-Eur. J.
, vol.12
, pp. 6393
-
-
Zeng, X.1
Coquière, D.2
Alenda, A.3
Garrier, E.4
Prangé, T.5
Li, Y.6
Reinaud, O.7
Jabin, I.8
-
28
-
-
18744397224
-
-
For Cu(tren) chemistry, see:
-
G. Izzet B. Douziech T. Prangé A. Tomas I. Jabin Y. Le Mest O. Reinaud Proc. Natl. Acad. Sci. U. S. A. 2005 102 6831
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 6831
-
-
Izzet, G.1
Douziech, B.2
Prangé, T.3
Tomas, A.4
Jabin, I.5
Le Mest, Y.6
Reinaud, O.7
-
31
-
-
0037464327
-
-
M. Weitzer S. Schindler G. Brehm S. Schneider E. Hoermann B. Jung S. Kaderli A. D. Zuberbühler Inorg. Chem. 2003 42 1800
-
(2003)
Inorg. Chem.
, vol.42
, pp. 1800
-
-
Weitzer, M.1
Schindler, S.2
Brehm, G.3
Schneider, S.4
Hoermann, E.5
Jung, B.6
Kaderli, S.7
Zuberbühler, A.D.8
-
32
-
-
4544377572
-
-
M. Schatz V. Raab S. P. Foxon G. Brehm S. Schneider M. Reiher M. C. Holthausen J. Sundermeyer S. Schindler Angew. Chem., Int. Ed. 2004 43 4360
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 4360
-
-
Schatz, M.1
Raab, V.2
Foxon, S.P.3
Brehm, G.4
Schneider, S.5
Reiher, M.6
Holthausen, M.C.7
Sundermeyer, J.8
Schindler, S.9
-
33
-
-
0842327362
-
-
K. Komiyama H. Furutachi S. Nagatomo A. Hashimoto H. Hayashi S. Fujinami M. Suzuki T. Kitagawa Bull. Chem. Soc. Jpn. 2004 77 59
-
(2004)
Bull. Chem. Soc. Jpn.
, vol.77
, pp. 59
-
-
Komiyama, K.1
Furutachi, H.2
Nagatomo, S.3
Hashimoto, A.4
Hayashi, H.5
Fujinami, S.6
Suzuki, M.7
Kitagawa, T.8
-
35
-
-
20444491521
-
-
The comparative values for RCN coordinated to various calix[6]arene-based complexes clearly indicate that a slight variation of the RCN guest positioning due to the different nitrogenous arms capping the small rim accounts at the most for a 0.1 ppm variation in the chemical shift of the α-protons of the coordinated guest (see the ESI). In contrast, we have shown that, in a closely related calix[6]arene-based Zn(ii) system, the up-field shift values for the α-protons of a non-coordinated guest is systematically larger (-0.8 to -1 ppm) compared to the coordinated one, whereas those corresponding to the β and γ positions of the guest alkyl chain are relatively similar. This shows that there is a specific effect due to the presence or absence of a coordination link, whereas the cavity effect and, as a result, the positioning of the guest, is little affected. See:
-
U. Darbost M.-N. Rager S. Petit I. Jabin O. Reinaud J. Am. Chem. Soc. 2005 127 8517
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 8517
-
-
Darbost, U.1
Rager, M.-N.2
Petit, S.3
Jabin, I.4
Reinaud, O.5
-
36
-
-
34250666106
-
-
3CN displayed in Fig. 3, which shows a single conformation for the calixarene core that is filled by the MeCN guest at low T. For all these reasons, we can exclude the alternative hypothesis of an equilibrium between two different coordinated species that would be just conformers, which anyway would be inconsistent with the thermodynamic data, particularly with the entropic values Tmpa stands for tris(2-methylpyridyl) amine.
-
U. Darbost O. Sénèque Y. Li G. Bertho J. Marrot M.-N. Rager O. Reinaud I. Jabin Chem.-Eur. J. 2006 10.1002/chem.200601040
-
(2006)
Chem.-Eur. J.
-
-
Darbost, U.1
Sénèque, O.2
Li, Y.3
Bertho, G.4
Marrot, J.5
Rager, M.-N.6
Reinaud, O.7
Jabin, I.8
-
37
-
-
0035959031
-
-
D. V. Scaltrito H. C. Fry B. M. Showalter D. W. Thompson H.-C. Liang C.-X. Zhang R. M. Kretzer E.-i. Kim J. P. Toscano K. D. Karlin G. J. Meyer Inorg. Chem. 2001 40 4514
-
(2001)
Inorg. Chem.
, vol.40
, pp. 4514
-
-
Scaltrito, D.V.1
Fry, H.C.2
Showalter, B.M.3
Thompson, D.W.4
Liang, H.-C.5
Zhang, C.-X.6
Kretzer, R.M.7
Kim, E.-i.8
Toscano, J.P.9
Karlin, K.D.10
Meyer, G.J.11
-
38
-
-
0442326282
-
-
and references cited therein See ref. 8a and references cited therein The reactivity of these cuprous complexes towards dioxygen is under investigation This was also reported with Cu(i)tmpa complexes:
-
H. V. Rasika Dias T. K. H. H. Goh Polyhedron 2004 23 273 282
-
(2004)
Polyhedron
, vol.23
, pp. 273-282
-
-
Rasika Dias, H.V.1
Goh, T.K.H.H.2
|