-
1
-
-
0033681250
-
Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter
-
Agalioti, T., S. Lomvardas, B. Parekh, J. Yie, T. Maniatis, and D. Thanos. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103:667-678.
-
(2000)
Cell
, vol.103
, pp. 667-678
-
-
Agalioti, T.1
Lomvardas, S.2
Parekh, B.3
Yie, J.4
Maniatis, T.5
Thanos, D.6
-
2
-
-
0023694311
-
Key features of heat shock regulatory elements
-
Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761-3769.
-
(1988)
Mol. Cell. Biol.
, vol.8
, pp. 3761-3769
-
-
Amin, J.1
Ananthan, J.2
Voellmy, R.3
-
3
-
-
0032214124
-
Broad, but not universal, transcriptional requirement for yTAFII 17, a histone H3-like TAFII present in TFIID and SAGA
-
Apone, L. M., C. A. Virbasius, F. C. Holstege, J. Wang, R. A. Young, and M. R. Green. 1998. Broad, but not universal, transcriptional requirement for yTAFII 17, a histone H3-like TAFII present in TFIID and SAGA. Mol. Cell 2:653-661.
-
(1998)
Mol. Cell
, vol.2
, pp. 653-661
-
-
Apone, L.M.1
Virbasius, C.A.2
Holstege, F.C.3
Wang, J.4
Young, R.A.5
Green, M.R.6
-
4
-
-
0032444813
-
Suppression of an Hsp70 mutant phenotype in Saccharomyces cerevisiae through loss of function of the chromatin component Sin 1p/Spt2p
-
Baxter, B. K., and E. A. Craig. 1998. Suppression of an Hsp70 mutant phenotype in Saccharomyces cerevisiae through loss of function of the chromatin component Sin 1p/Spt2p. J. Bacteriol. 180:6484-6492.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 6484-6492
-
-
Baxter, B.K.1
Craig, E.A.2
-
5
-
-
2942574467
-
Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol
-
Boeger, H., J. Griesenbeck, J. S. Strattan, and R. D. Kornberg. 2004. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14:667-673.
-
(2004)
Cell
, vol.14
, pp. 667-673
-
-
Boeger, H.1
Griesenbeck, J.2
Strattan, J.S.3
Kornberg, R.D.4
-
6
-
-
0033037610
-
The heat shock response in yeast: Differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons
-
Boy-Marcotte, E., G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M. Jacquet, and J. Labarre. 1999. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33:274-283.
-
(1999)
Mol. Microbiol.
, vol.33
, pp. 274-283
-
-
Boy-Marcotte, E.1
Lagniel, G.2
Perrot, M.3
Bussereau, F.4
Boudsocq, A.5
Jacquet, M.6
Labarre, J.7
-
7
-
-
0032708765
-
Transcriptional activation in yeast cells lacking transcription factor IIA
-
Chou, S., S. Chatterjee, M. Lee, and K. Struhl. 1999. Transcriptional activation in yeast cells lacking transcription factor IIA. Genetics 153:1573-1581.
-
(1999)
Genetics
, vol.153
, pp. 1573-1581
-
-
Chou, S.1
Chatterjee, S.2
Lee, M.3
Struhl, K.4
-
8
-
-
0033617334
-
Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter
-
Cosma, M. P., T. Tanaka, and K. Nasmyth. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97:299-311.
-
(1999)
Cell
, vol.97
, pp. 299-311
-
-
Cosma, M.P.1
Tanaka, T.2
Nasmyth, K.3
-
9
-
-
0035076210
-
Histone acetylation at promoters is differentially affected by specific activators and repressers
-
Deckerl, J., and K. Struhl. 2001. Histone acetylation at promoters is differentially affected by specific activators and repressers. Mol. Cell. Biol. 21: 2726-2735.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 2726-2735
-
-
Deckerl, J.1
Struhl, K.2
-
10
-
-
0033519641
-
Structure and ligand of a histone acetyltransferase bromodomain
-
Dhalluin, C., J. E. Carlson, L. Zeng, C. He, A. K. Aggarwal, and M. M. Zhou. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491-496.
-
(1999)
Nature
, vol.399
, pp. 491-496
-
-
Dhalluin, C.1
Carlson, J.E.2
Zeng, L.3
He, C.4
Aggarwal, A.K.5
Zhou, M.M.6
-
11
-
-
0033636323
-
ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR in vitro
-
Dilworth, F. J., C. Fromental-Ramain, K. Yamamoto, and P. Chambon. 2000. ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro. Mol. Cell 6:1049-1058.
-
(2000)
Mol. Cell
, vol.6
, pp. 1049-1058
-
-
Dilworth, F.J.1
Fromental-Ramain, C.2
Yamamoto, K.3
Chambon, P.4
-
12
-
-
0029910365
-
Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription
-
Erkine, A. M., C. C. Adams, T. Diken, and D. S. Gross. 1996. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. Mol. Cell. Biol. 16:7004-7017.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 7004-7017
-
-
Erkine, A.M.1
Adams, C.C.2
Diken, T.3
Gross, D.S.4
-
13
-
-
0037424263
-
Dynamic chromatin alterations triggered by natural and synthetic activation domains
-
Erkine, A. M., and D. S. Gross. 2003. Dynamic chromatin alterations triggered by natural and synthetic activation domains. J. Biol. Chem. 278:7755-7764.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 7755-7764
-
-
Erkine, A.M.1
Gross, D.S.2
-
14
-
-
0032979987
-
Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro
-
Erkine, A. M., S. F. Magrogan, E. A. Sekinger, and D. S. Gross. 1999. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Mol. Cell. Biol. 19:1627-1639.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 1627-1639
-
-
Erkine, A.M.1
Magrogan, S.F.2
Sekinger, E.A.3
Gross, D.S.4
-
15
-
-
0345276461
-
Chromatin remodeling in vivo: Evidence for a nucleosome sliding mechanism
-
Fazzio, T. G., and T. Tsukiyama. 2003. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12:1333-1340.
-
(2003)
Mol. Cell
, vol.12
, pp. 1333-1340
-
-
Fazzio, T.G.1
Tsukiyama, T.2
-
16
-
-
17444389196
-
Protein kinase a regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae
-
Ferguson, S. B., E. S. Andersen, R. B. Harshaw, T. Thate, N. L. Craig, and H. C. Nelson. 2005. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:1203-1214.
-
(2005)
Genetics
, vol.169
, pp. 1203-1214
-
-
Ferguson, S.B.1
Andersen, E.S.2
Harshaw, R.B.3
Thate, T.4
Craig, N.L.5
Nelson, H.C.6
-
17
-
-
0028911832
-
Dynamic protein-DNA architecture of a yeast heat shock promoter
-
Giardina, C., and J. T. Lis. 1995. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:2737-2744.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 2737-2744
-
-
Giardina, C.1
Lis, J.T.2
-
18
-
-
0027270883
-
A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene
-
Gross, D. S., C. C. Adams, S. Lee, and B. Stentz. 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 12:3931-3945.
-
(1993)
EMBO J.
, vol.12
, pp. 3931-3945
-
-
Gross, D.S.1
Adams, C.C.2
Lee, S.3
Stentz, B.4
-
19
-
-
0025678738
-
Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements
-
Gross, D. S., K. E. English, K. W. Collins, and S. W. Lee. 1990. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J. Mol. Biol. 216:611-631.
-
(1990)
J. Mol. Biol.
, vol.216
, pp. 611-631
-
-
Gross, D.S.1
English, K.E.2
Collins, K.W.3
Lee, S.W.4
-
20
-
-
2942598422
-
Genome-wide analysis of the biology of stress responses through heat shock transcription factor
-
Hahn, J. S., Z. Hu, D. J. Thiele, and V. R. Iyer. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24:5249-5256.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 5249-5256
-
-
Hahn, J.S.1
Hu, Z.2
Thiele, D.J.3
Iyer, V.R.4
-
21
-
-
1942518714
-
Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element
-
Hashikawa, N., and H. Sakurai. 2004. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol. Cell. Biol. 24:3648-3659.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3648-3659
-
-
Hashikawa, N.1
Sakurai, H.2
-
22
-
-
0036847620
-
Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
-
Hassan, A. H., P. Procbasson, K. E. Neely, S. C. Galasinski, M. Chandy, M. J. Carrozza, and J. L. Workman. 2002. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369-379.
-
(2002)
Cell
, vol.111
, pp. 369-379
-
-
Hassan, A.H.1
Procbasson, P.2
Neely, K.E.3
Galasinski, S.C.4
Chandy, M.5
Carrozza, M.J.6
Workman, J.L.7
-
23
-
-
0028321786
-
A short element required for turning off heat shock transcription factor: Evidence that phosphorylation enhances deactivation
-
Hoj, A., and B. K. Jakobsen. 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13:2617-2624.
-
(1994)
EMBO J.
, vol.13
, pp. 2617-2624
-
-
Hoj, A.1
Jakobsen, B.K.2
-
24
-
-
0023701108
-
Constitutive binding of yeast heat shock factor to DNA in vivo
-
Jakobsen, B. K., and H. R. Pelham. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040-5042.
-
(1988)
Mol. Cell. Biol.
, vol.8
, pp. 5040-5042
-
-
Jakobsen, B.K.1
Pelham, H.R.2
-
25
-
-
0035839136
-
Translating the histone code
-
Jenuwein, T., and C. D. Allis. 2001. Translating the histone code. Science 293:1074-1080.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
26
-
-
0343924289
-
Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
-
Kadosh, D., and K. Struhl. 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365-371.
-
(1997)
Cell
, vol.89
, pp. 365-371
-
-
Kadosh, D.1
Struhl, K.2
-
27
-
-
0031441708
-
Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I
-
Keener, J., J. A. Dodd, D. Lalo, and M. Nomura. 1997. Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I. Proc. Natl. Acad. Sci. USA 94:13458-13462.
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 13458-13462
-
-
Keener, J.1
Dodd, J.A.2
Lalo, D.3
Nomura, M.4
-
28
-
-
10044296220
-
Evidence for histone eviction in Irans upon induction of the yeast PHO5 promoter
-
Korber, P., T. Luckenbach, D. Blaschke, and W. Horz. 2004. Evidence for histone eviction in Irans upon induction of the yeast PHO5 promoter. Mol. Cell. Biol. 24:10965-10974.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 10965-10974
-
-
Korber, P.1
Luckenbach, T.2
Blaschke, D.3
Horz, W.4
-
29
-
-
0033152279
-
Cell cycle-regulated histone acetylation required for expression of the yeast HO gene
-
Krebs, J. E., M. H. Kuo, C. D. Allis, and C. L. Peterson. 1999. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13:1412-1421.
-
(1999)
Genes Dev.
, vol.13
, pp. 1412-1421
-
-
Krebs, J.E.1
Kuo, M.H.2
Allis, C.D.3
Peterson, C.L.4
-
30
-
-
9144274420
-
Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo
-
Kristjuhan, A., and J. Q. Svejstrup. 2004. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23: 4243-4252.
-
(2004)
EMBO J.
, vol.23
, pp. 4243-4252
-
-
Kristjuhan, A.1
Svejstrup, J.Q.2
-
31
-
-
0033603212
-
Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer
-
Langst, G., E. J. Bonte, D. F. Corona, and P. B. Becker. 1999. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97:843-852.
-
(1999)
Cell
, vol.97
, pp. 843-852
-
-
Langst, G.1
Bonte, E.J.2
Corona, D.F.3
Becker, P.B.4
-
32
-
-
3543023310
-
Evidence for nucleosome depletion at active regulatory regions genome-wide
-
Lee, C. K., Y. Shibata, B. Rao, B. D. Strahl, and J. D. Lieb. 2004. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36:900-905.
-
(2004)
Nat. Genet.
, vol.36
, pp. 900-905
-
-
Lee, C.K.1
Shibata, Y.2
Rao, B.3
Strahl, B.D.4
Lieb, J.D.5
-
33
-
-
0032575073
-
Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo
-
Lee, D., and J. T. Lis. 1998. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393:389-392.
-
(1998)
Nature
, vol.393
, pp. 389-392
-
-
Lee, D.1
Lis, J.T.2
-
34
-
-
0032529164
-
Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast
-
McNeil, J. B., H. Agah, and D. Bentley. 1998. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev. 12:2510-2521.
-
(1998)
Genes Dev.
, vol.12
, pp. 2510-2521
-
-
McNeil, J.B.1
Agah, H.2
Bentley, D.3
-
35
-
-
0032215385
-
The histone H3-like TAF is broadly required for transcription in yeast
-
Moqtaderi, Z., M. Keaveney, and K. Struhl. 1998. The histone H3-like TAF is broadly required for transcription in yeast. Mol. Cell 2:675-682.
-
(1998)
Mol. Cell
, vol.2
, pp. 675-682
-
-
Moqtaderi, Z.1
Keaveney, M.2
Struhl, K.3
-
36
-
-
0032931842
-
A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress
-
Morano, K. A., N. Santoro, K. A. Koch, and D. J. Thiele. 1999. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol. Cell. Biol. 19:402-411.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 402-411
-
-
Morano, K.A.1
Santoro, N.2
Koch, K.A.3
Thiele, D.J.4
-
37
-
-
0032535245
-
Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators
-
Morimoto, RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-3796.
-
(1998)
Genes Dev.
, vol.12
, pp. 3788-3796
-
-
Morimoto, R.I.1
-
38
-
-
0025122831
-
The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions
-
Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807-817.
-
(1990)
Cell
, vol.62
, pp. 807-817
-
-
Nieto-Sotelo, J.1
Wiederrecht, G.2
Okuda, A.3
Parker, C.S.4
-
39
-
-
0024850646
-
Stable binding of Drosophila heat shock factor to head-to-head and tail- To-tail repeats of a conserved 5 bp recognition unit
-
Perisic, O., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail- to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797-806.
-
(1989)
Cell
, vol.59
, pp. 797-806
-
-
Perisic, O.1
Xiao, H.2
Lis, J.T.3
-
40
-
-
0035265922
-
A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo
-
Reinke, H., P. D. Gregory, and W. Horz. 2001. A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo. Mol. Cell 7:529-538.
-
(2001)
Mol. Cell
, vol.7
, pp. 529-538
-
-
Reinke, H.1
Gregory, P.D.2
Horz, W.3
-
41
-
-
0038094502
-
Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter
-
Reinke, H., and W. Horz. 2003. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11:1599-1607.
-
(2003)
Mol. Cell
, vol.11
, pp. 1599-1607
-
-
Reinke, H.1
Horz, W.2
-
42
-
-
0031771494
-
Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor
-
Santoro, N., N. Johansson, and D. J. Thiele. 1998. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol. Cell. Biol. 18:6340-6352.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 6340-6352
-
-
Santoro, N.1
Johansson, N.2
Thiele, D.J.3
-
43
-
-
0024989583
-
Yeast heat shock factor contains separable transient and sustained response transcriptional activators
-
Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793-805.
-
(1990)
Cell
, vol.62
, pp. 793-805
-
-
Sorger, P.K.1
-
44
-
-
0023643235
-
Heat shock factor is regulated differently in yeast and HeLa cells
-
Sorger, P. K., M. J. Lewis, and H. R. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81-84.
-
(1987)
Nature
, vol.329
, pp. 81-84
-
-
Sorger, P.K.1
Lewis, M.J.2
Pelham, H.R.3
-
45
-
-
0024282785
-
Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation
-
Sorger, P. K., and H. R. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855-864.
-
(1988)
Cell
, vol.54
, pp. 855-864
-
-
Sorger, P.K.1
Pelham, H.R.2
-
46
-
-
0034610814
-
The language of covalent histone modifications
-
Strahl, B. D., and C. D. Allis. 2000. The language of covalent histone modifications. Nature 403:41-45.
-
(2000)
Nature
, vol.403
, pp. 41-45
-
-
Strahl, B.D.1
Allis, C.D.2
-
47
-
-
3542991477
-
On mechanisms that control heat shock transcription factor activity in metazoan cells
-
Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122-133.
-
(2004)
Cell Stress Chaperones
, vol.9
, pp. 122-133
-
-
Voellmy, R.1
-
48
-
-
0023863121
-
Germline transformation used to define key features of heat-shock response elements
-
Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of heat-shock response elements. Science 239:1139-1142.
-
(1988)
Science
, vol.239
, pp. 1139-1142
-
-
Xiao, H.1
Lis, J.T.2
-
49
-
-
0025965278
-
Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit
-
Xiao, H., O. Perisic, and J. T. Lis. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585-593.
-
(1991)
Cell
, vol.64
, pp. 585-593
-
-
Xiao, H.1
Perisic, O.2
Lis, J.T.3
-
50
-
-
15744382453
-
Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae
-
Yamamoto, A., Y. Mizukami, and H. Sakurai. 2005. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J. Biol. Chem. 280:11911-11919.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 11911-11919
-
-
Yamamoto, A.1
Mizukami, Y.2
Sakurai, H.3
-
51
-
-
0027328535
-
Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct
-
Young, M. R., and E. A. Craig. 1993. Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct. Mol. Cell. Biol. 13:5637-5646.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 5637-5646
-
-
Young, M.R.1
Craig, E.A.2
-
52
-
-
26444545490
-
Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density
-
Zhao, J., J. Herrera-Diaz, and D. S. Gross. 2005. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol. Cell. Biol. 25:8985-8999.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 8985-8999
-
-
Zhao, J.1
Herrera-Diaz, J.2
Gross, D.S.3
|