-
1
-
-
0027938515
-
Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro
-
Amin, J., M. Fernandez, J. Ananthan, J. T. Lis, and R. Voellmy. 1994. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro. J. Biol. Chem. 269:4804-4811.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 4804-4811
-
-
Amin, J.1
Fernandez, M.2
Ananthan, J.3
Lis, J.T.4
Voellmy, R.5
-
3
-
-
0027447342
-
A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae
-
Chen, J., and D. S. Pederson. 1993. A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:7442-7448.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 7442-7448
-
-
Chen, J.1
Pederson, D.S.2
-
4
-
-
0024298718
-
Periodic interactions of heat shock transcriptional elements
-
Cohen, R. S., and M. Meselson. 1988. Periodic interactions of heat shock transcriptional elements. Nature 332:856-858.
-
(1988)
Nature
, vol.332
, pp. 856-858
-
-
Cohen, R.S.1
Meselson, M.2
-
5
-
-
0344537281
-
-
Unpublished results
-
Diken, T., and D. S. Gross. 1994. Unpublished results.
-
(1994)
-
-
Diken, T.1
Gross, D.S.2
-
6
-
-
0029910365
-
Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription
-
Erkine, A. M., C. C. Adams, T. Diken, and D. S. Gross. 1996. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. Mol. Cell. Biol. 16:7004-7017.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 7004-7017
-
-
Erkine, A.M.1
Adams, C.C.2
Diken, T.3
Gross, D.S.4
-
7
-
-
0029026401
-
Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter
-
Erkine, A. M., C. C. Adams, M. Gao, and D. S. Gross. 1995. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter. Nucleic Acids Res. 23:1822-1829.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 1822-1829
-
-
Erkine, A.M.1
Adams, C.C.2
Gao, M.3
Gross, D.S.4
-
9
-
-
0029076324
-
The upstream sequences of the HSPS2 and HSC82 genes of Saccharomyces cerevisiae: Regulatory elements and nucleosome positioning motifs
-
Erkine, A. M., C. Szent-Gyorgyi, S. F. Simmons, and D. S. Gross. 1995. The upstream sequences of the HSPS2 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs. Yeast 11: 573-580.
-
(1995)
Yeast
, vol.11
, pp. 573-580
-
-
Erkine, A.M.1
Szent-Gyorgyi, C.2
Simmons, S.F.3
Gross, D.S.4
-
10
-
-
0028801302
-
Binding of heat shock factor to and transcriptional activation of heat shock genes in Drosophila
-
Fernandes, M., H. Xiao, and J. T. Lis. 1995. Binding of heat shock factor to and transcriptional activation of heat shock genes in Drosophila. Nucleic Acids Res. 23:4799-4804.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 4799-4804
-
-
Fernandes, M.1
Xiao, H.2
Lis, J.T.3
-
11
-
-
0028222344
-
Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions
-
Fernandes, M., H. Xiao, and J. T. Lis. 1994. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res. 22:167-173.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 167-173
-
-
Fernandes, M.1
Xiao, H.2
Lis, J.T.3
-
13
-
-
0028911832
-
Dynamic protein-DNA architecture of a yeast heat shock promoter
-
Giardina, C., and J. T. Lis. 1995. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:2737-2744.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 2737-2744
-
-
Giardina, C.1
Lis, J.T.2
-
14
-
-
0023803638
-
Cooperative DNA binding of the yeast transcriptional activator GAL4
-
Giniger, E., and M. Ptashne. 1988. Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc. Natl. Acad. Sci. USA 85:382-386.
-
(1988)
Proc. Natl. Acad. Sci. USA
, vol.85
, pp. 382-386
-
-
Giniger, E.1
Ptashne, M.2
-
15
-
-
0028896839
-
Heat-inducible DNA binding of purified heat shock transcription factor 1
-
Goodson, M. L., and K. D. Sarge. 1995. Heat-inducible DNA binding of purified heat shock transcription factor 1. J. Biol. Chem. 270:2447-2450.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 2447-2450
-
-
Goodson, M.L.1
Sarge, K.D.2
-
16
-
-
0027270883
-
A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene
-
Gross, D. S., C. C. Adams, S. Lee, and B. Stentz. 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 12:3931-3945.
-
(1993)
EMBO J.
, vol.12
, pp. 3931-3945
-
-
Gross, D.S.1
Adams, C.C.2
Lee, S.3
Stentz, B.4
-
17
-
-
0025678738
-
Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements
-
Gross, D. S., K. E. English, K. W. Collins, and S. Lee. 1990. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J. Mol. Biol. 216:611-631.
-
(1990)
J. Mol. Biol.
, vol.216
, pp. 611-631
-
-
Gross, D.S.1
English, K.E.2
Collins, K.W.3
Lee, S.4
-
18
-
-
0028321786
-
A short element required for turning off heat shock transcription factor: Evidence that phosphorylation enhances deactivation
-
Hoj, A., and B. K. Jakobsen. 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13:2617-2624.
-
(1994)
EMBO J.
, vol.13
, pp. 2617-2624
-
-
Hoj, A.1
Jakobsen, B.K.2
-
19
-
-
0023701108
-
Constitutive binding of yeast heat shock factor to DNA in vivo
-
Jakobsen, B. K., and H. R. B. Pelham. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040-5042.
-
(1988)
Mol. Cell. Biol.
, vol.8
, pp. 5040-5042
-
-
Jakobsen, B.K.1
Pelham, H.R.B.2
-
20
-
-
0343924289
-
Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
-
Kadosh, D., and K. Struhl. 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365-371.
-
(1997)
Cell
, vol.89
, pp. 365-371
-
-
Kadosh, D.1
Struhl, K.2
-
21
-
-
0026701401
-
Uncoupling gene activity from chromatin structure: Promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions
-
Lee, M. S., and W. T. Garrard. 1992. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions. Proc. Natl. Acad. Sci. USA 89:9166-9170.
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 9166-9170
-
-
Lee, M.S.1
Garrard, W.T.2
-
22
-
-
0027458443
-
Conditional silencing: The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene
-
Lee, S., and D. S. Gross. 1993. Conditional silencing: The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Mol. Cell. Biol. 13:727-738.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 727-738
-
-
Lee, S.1
Gross, D.S.2
-
23
-
-
0019433557
-
Regulation of protein synthesis during heat shock
-
Lindquist, S. 1981. Regulation of protein synthesis during heat shock. Nature 293:311-314.
-
(1981)
Nature
, vol.293
, pp. 311-314
-
-
Lindquist, S.1
-
24
-
-
0027220589
-
Protein traffic on the heat shock promoter: Parking, stalling, and trucking along
-
Lis, J. T., and C. Wu. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74:1-4.
-
(1993)
Cell
, vol.74
, pp. 1-4
-
-
Lis, J.T.1
Wu, C.2
-
25
-
-
0022885153
-
The DNA binding domain and bending angle of E. coli CAP protein
-
Liu-Johnson, H.-N., M. Gartenberg, and D. Crothers. 1986. The DNA binding domain and bending angle of E. coli CAP protein. Cell 47:995-1005.
-
(1986)
Cell
, vol.47
, pp. 995-1005
-
-
Liu-Johnson, H.-N.1
Gartenberg, M.2
Crothers, D.3
-
26
-
-
0029994743
-
A new Saccharomyces cerevisiae ankyrin repeat-encoding gene required for a normal rate of cell proliferation
-
Lycan, D. E., K. A. Stafford, W. Bollinger, and L. L. Breeden. 1996. A new Saccharomyces cerevisiae ankyrin repeat-encoding gene required for a normal rate of cell proliferation. Gene 171:33-40.
-
(1996)
Gene
, vol.171
, pp. 33-40
-
-
Lycan, D.E.1
Stafford, K.A.2
Bollinger, W.3
Breeden, L.L.4
-
27
-
-
0018846636
-
Sequencing end-labeled DNA with base-specific chemical cleavages
-
Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499-560.
-
(1980)
Methods Enzymol.
, vol.65
, pp. 499-560
-
-
Maxam, A.M.1
Gilbert, W.2
-
28
-
-
0024325454
-
Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element
-
McDaniel, D., A. J. Caplan, M. S. Lee, C. C. Adams, B. R. Fishel, D. S. Gross, and W. T. Garrard. 1989. Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element. Mol. Cell. Biol. 9:4789-4798.
-
(1989)
Mol. Cell. Biol.
, vol.9
, pp. 4789-4798
-
-
McDaniel, D.1
Caplan, A.J.2
Lee, M.S.3
Adams, C.C.4
Fishel, B.R.5
Gross, D.S.6
Garrard, W.T.7
-
29
-
-
0028194848
-
Control of meiotic gene expression in Saccharomyces cerevisiae
-
Mitchell, A. P. 1994. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58:56-70.
-
(1994)
Microbiol. Rev.
, vol.58
, pp. 56-70
-
-
Mitchell, A.P.1
-
30
-
-
0032034779
-
Protein chaperones and the heat shock response in Saccharomyces cerevisiae
-
Morano, K. A., P. C. C. Liu, and D. J. Thiele. 1998. Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Curr. Opin. Microbiol. 1:197-203.
-
(1998)
Curr. Opin. Microbiol.
, vol.1
, pp. 197-203
-
-
Morano, K.A.1
Liu, P.C.C.2
Thiele, D.J.3
-
31
-
-
0027522356
-
Cells in stress: Transcriptional activation of heat shock genes
-
Morimoto, R. I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259:1409-1410.
-
(1993)
Science
, vol.259
, pp. 1409-1410
-
-
Morimoto, R.I.1
-
32
-
-
0001806571
-
The stress response, function of the proteins, and perspectives
-
R. Morimoto, A. Tissières, and C. Georgopoulos (ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
Morimoto, R. I., A. Tissières, and C. Georgopoulos. 1990. The stress response, function of the proteins, and perspectives, p. 1-36. In R. Morimoto, A. Tissières, and C. Georgopoulos (ed.), Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
(1990)
Stress Proteins in Biology and Medicine
, pp. 1-36
-
-
Morimoto, R.I.1
Tissières, A.2
Georgopoulos, C.3
-
33
-
-
0029395010
-
Stress signaling in yeast
-
Ruis, H., and C. Schuller. 1995. Stress signaling in yeast. Bioessays 17:959-965.
-
(1995)
Bioessays
, vol.17
, pp. 959-965
-
-
Ruis, H.1
Schuller, C.2
-
34
-
-
0032560117
-
Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3
-
Rundlett, S. E., A. A. Carmen, N. Suka, B. M. Turner, and M. Grunstein. 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831-835.
-
(1998)
Nature
, vol.392
, pp. 831-835
-
-
Rundlett, S.E.1
Carmen, A.A.2
Suka, N.3
Turner, B.M.4
Grunstein, M.5
-
36
-
-
0028886503
-
Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance
-
Sewell, A. K., F. Yokoya, W. Yu, T. Miyagawa, T. Murayama, and D. R. Winge. 1995. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance. J. Biol. Chem. 270:25079-25086.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 25079-25086
-
-
Sewell, A.K.1
Yokoya, F.2
Yu, W.3
Miyagawa, T.4
Murayama, T.5
Winge, D.R.6
-
37
-
-
0027177579
-
Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2
-
Sheldon, L. A., and R. E. Kingston. 1993. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes Dev. 7:1549-1558.
-
(1993)
Genes Dev.
, vol.7
, pp. 1549-1558
-
-
Sheldon, L.A.1
Kingston, R.E.2
-
38
-
-
0028822276
-
HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites
-
Shopland, L. S., K. Hirayoshi, M. Fernandes, and J. T. Lis. 1995. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev. 9:2756-2769.
-
(1995)
Genes Dev.
, vol.9
, pp. 2756-2769
-
-
Shopland, L.S.1
Hirayoshi, K.2
Fernandes, M.3
Lis, J.T.4
-
39
-
-
0026063552
-
Heat shock transcription factor activates transcription of the yeast metallothionein gene
-
Silar, P., G. Butler, and D. J. Thiele. 1991. Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol. Cell. Biol. 11:1232-1238.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 1232-1238
-
-
Silar, P.1
Butler, G.2
Thiele, D.J.3
-
40
-
-
0024989583
-
Yeast heat shock factor contains separable transient and sustained response transcriptional activators
-
Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793-805.
-
(1990)
Cell
, vol.62
, pp. 793-805
-
-
Sorger, P.K.1
-
41
-
-
0023643235
-
Heat shock factor is regulated differently in yeast and HeLa cells
-
Sorger, P. K., M. J. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81-84.
-
(1987)
Nature
, vol.329
, pp. 81-84
-
-
Sorger, P.K.1
Lewis, M.J.2
Pelham, H.R.B.3
-
42
-
-
0024282785
-
Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation
-
Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855-864.
-
(1988)
Cell
, vol.54
, pp. 855-864
-
-
Sorger, P.K.1
Pelham, H.R.B.2
-
43
-
-
0028847223
-
A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82
-
Szent-Gyorgyi, C. 1995. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Mol. Cell. Biol. 15:6754-6769.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 6754-6769
-
-
Szent-Gyorgyi, C.1
-
45
-
-
0023089385
-
Sharp boundaries demarcate the chromatin structure of a yeast heat-shock gene
-
Szent-Gyorgyi, C., D. B. Finkelstein, and W. T. Garrard. 1987. Sharp boundaries demarcate the chromatin structure of a yeast heat-shock gene. J. Mol. Biol. 193:71-80.
-
(1987)
J. Mol. Biol.
, vol.193
, pp. 71-80
-
-
Szent-Gyorgyi, C.1
Finkelstein, D.B.2
Garrard, W.T.3
-
46
-
-
0025780941
-
Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: Differential function of DNA-binding domains
-
Taylor, I. C., J. L. Workman, T. J. Schuetz, and R. E. Kingston. 1991. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5:1285-1298.
-
(1991)
Genes Dev.
, vol.5
, pp. 1285-1298
-
-
Taylor, I.C.1
Workman, J.L.2
Schuetz, T.J.3
Kingston, R.E.4
-
47
-
-
0022129510
-
Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene
-
Topol, J., D. M. Ruden, and C. S. Parker. 1985 Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene. Cell 42:527-537.
-
(1985)
Cell
, vol.42
, pp. 527-537
-
-
Topol, J.1
Ruden, D.M.2
Parker, C.S.3
-
48
-
-
0027434814
-
Biochemical properties of cloned glutathione S-transferases from Schistosoma mansoni and Schistosoma japonicum
-
Walker, J., P. Crowley, A. D. Moreman, and J. Barrett. 1993. Biochemical properties of cloned glutathione S-transferases from Schistosoma mansoni and Schistosoma japonicum. Mol. Biochem. Parasitol. 61:255-264.
-
(1993)
Mol. Biochem. Parasitol.
, vol.61
, pp. 255-264
-
-
Walker, J.1
Crowley, P.2
Moreman, A.D.3
Barrett, J.4
-
49
-
-
0030946171
-
Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: Hormone-regulated chromatin disruption is not sufficient for transcriptional activation
-
Wong, J., Y.-B. Shi, and A. Wolffe. 1997. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation. EMBO J. 16:3158-3171.
-
(1997)
EMBO J.
, vol.16
, pp. 3158-3171
-
-
Wong, J.1
Shi, Y.-B.2
Wolffe, A.3
-
50
-
-
0029564954
-
Heat shock transcription factors: Structure and regulation
-
Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11:441-469.
-
(1995)
Annu. Rev. Cell Dev. Biol.
, vol.11
, pp. 441-469
-
-
Wu, C.1
-
51
-
-
0025965278
-
Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit
-
Xiao, H., O. Perisic, and J. T. Lis. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585-593.
-
(1991)
Cell
, vol.64
, pp. 585-593
-
-
Xiao, H.1
Perisic, O.2
Lis, J.T.3
-
52
-
-
0031594292
-
Ga14p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication
-
Xu, M., R. T. Simpson, and M. P. Kladde. 1998. Ga14p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol. Cell. Biol. 18:1201-1212.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 1201-1212
-
-
Xu, M.1
Simpson, R.T.2
Kladde, M.P.3
-
53
-
-
0030911696
-
Nuclear entry, oligomerization, and DNA binding of the drosophila heat shock transcription factor are regulated by a unique nuclear localization sequence
-
Zandi, E., T. T. Tran, W. Chamberlain, and C. S. Parker. 1997. Nuclear entry, oligomerization, and DNA binding of the Drosophila heat shock transcription factor are regulated by a unique nuclear localization sequence. Genes Dev. 11:1299-1314.
-
(1997)
Genes Dev.
, vol.11
, pp. 1299-1314
-
-
Zandi, E.1
Tran, T.T.2
Chamberlain, W.3
Parker, C.S.4
-
54
-
-
0032112367
-
Direct sensing of heat and oxidation by Drosophila heat shock transcription factor
-
Zhong, M., A. Orosz, and C. Wu. 1998. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol. Cell 2:101-108.
-
(1998)
Mol. Cell
, vol.2
, pp. 101-108
-
-
Zhong, M.1
Orosz, A.2
C, W.3
|