메뉴 건너뛰기




Volumn 50, Issue 4, 2003, Pages 697-703

Independent component analysis for automated decomposition of in vivo magnetic resonance spectra

Author keywords

Automatic decomposition; Independent component analysis (ICA); Model; MRS; Principal component analysis (PCA)

Indexed keywords

DECOMPOSITION; DIAGNOSIS; MAGNETIC RESONANCE; MAGNETIC RESONANCE SPECTROSCOPY; MODELS; PATTERN RECOGNITION; PRINCIPAL COMPONENT ANALYSIS; SIGNAL PROCESSING;

EID: 0141617526     PISSN: 07403194     EISSN: None     Source Type: Journal    
DOI: 10.1002/mrm.10595     Document Type: Article
Times cited : (51)

References (23)
  • 1
    • 0032977622 scopus 로고    scopus 로고
    • Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks
    • Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 1999;125:343-349.
    • (1999) J Cancer Res Clin Oncol , vol.125 , pp. 343-349
    • Poptani, H.1    Kaartinen, J.2    Gupta, R.K.3    Niemitz, M.4    Hiltunen, Y.5    Kauppinen, R.A.6
  • 7
    • 58149364545 scopus 로고
    • Application of principal component analysis for NMR spectral quantitation
    • Stoyanova R, Kuesel AC, Brown TR. Application of principal component analysis for NMR spectral quantitation. J Magn Reson Ser A 1995;115:265-269.
    • (1995) J Magn Reson Ser A , vol.115 , pp. 265-269
    • Stoyanova, R.1    Kuesel, A.C.2    Brown, T.R.3
  • 8
    • 85092119645 scopus 로고
    • Ph.D. thesis, St. George's Hospital Medical School, London, UK
    • 1H MR spectra of tumours. Ph.D. thesis, St. George's Hospital Medical School, London, UK, 1993.
    • (1993) 1H MR Spectra of Tumours
    • Howells, S.L.1
  • 10
    • 0033093826 scopus 로고    scopus 로고
    • A new method for spectral decomposition using a bilinear Bayesian approach
    • Ochs MF, Stoyanova RS, Aris-Mendoza F, Brown TR. A new method for spectral decomposition using a bilinear Bayesian approach. J Magn Reson 1999;137:161-176.
    • (1999) J Magn Reson , vol.137 , pp. 161-176
    • Ochs, M.F.1    Stoyanova, R.S.2    Aris-Mendoza, F.3    Brown, T.R.4
  • 11
    • 0001104444 scopus 로고    scopus 로고
    • Model-free analysis of mixtures by NMR using blind source separation
    • Nuzillard D, Bourg S, Nuzillard JM. Model-free analysis of mixtures by NMR using blind source separation. J Magn Reson 1998;133:358-363.
    • (1998) J Magn Reson , vol.133 , pp. 358-363
    • Nuzillard, D.1    Bourg, S.2    Nuzillard, J.M.3
  • 15
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw 2000;13:411-430.
    • (2000) Neural Netw , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 16
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10:626-634.
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 17
    • 0141721793 scopus 로고    scopus 로고
    • FastICA. http://www.cis.hut.fi/projects/ica/fastica/, 2000.
    • (2000)
  • 19
    • 0141610123 scopus 로고    scopus 로고
    • INTERPRET. http://carbon.uab.es/INTERPRET, 2000.
    • (2000)
  • 23
    • 0033570817 scopus 로고    scopus 로고
    • Natural gradient learning for over- and under-complete bases in ICA
    • Amari S. Natural gradient learning for over- and under-complete bases in ICA. Neural Comp 1999;11:1875-1883.
    • (1999) Neural Comp , vol.11 , pp. 1875-1883
    • Amari, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.