-
1
-
-
0034881391
-
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
-
Berg AH, Combs TP, Du X, Brownlee M, and Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7: 947-953, 2001.
-
(2001)
Nat Med
, vol.7
, pp. 947-953
-
-
Berg, A.H.1
Combs, T.P.2
Du, X.3
Brownlee, M.4
Scherer, P.E.5
-
2
-
-
0242581695
-
Adiponectin stimulates production of nitric oxide in vascular endothelial cells
-
Chen H, Montagnani M, Funahashi T, Shimomura I, and Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278: 45021-45026, 2003.
-
(2003)
J Biol Chem
, vol.278
, pp. 45021-45026
-
-
Chen, H.1
Montagnani, M.2
Funahashi, T.3
Shimomura, I.4
Quon, M.J.5
-
3
-
-
0035663963
-
Endogenous glucose production is inhibited by the adipose-derived protein Acrp30
-
Combs TP, Berg AH, Obici S, Scherer PE, and Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 108: 1875-1881, 2001.
-
(2001)
J Clin Invest
, vol.108
, pp. 1875-1881
-
-
Combs, T.P.1
Berg, A.H.2
Obici, S.3
Scherer, P.E.4
Rossetti, L.5
-
4
-
-
0036170286
-
Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle
-
Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, and Le Roith D. Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109: 347-355, 2002.
-
(2002)
J Clin Invest
, vol.109
, pp. 347-355
-
-
Fernandez, A.M.1
Dupont, J.2
Farrar, R.P.3
Lee, S.4
Stannard, B.5
Le Roith, D.6
-
5
-
-
0035425234
-
Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes
-
Fernandez AM, Kim JK, Yakar S, Dupont J, Hernandez-Sanchez C, Castle AL, Filmore J, Shulman GI, and Le Roith D. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15: 1926-1934, 2001.
-
(2001)
Genes Dev
, vol.15
, pp. 1926-1934
-
-
Fernandez, A.M.1
Kim, J.K.2
Yakar, S.3
Dupont, J.4
Hernandez-Sanchez, C.5
Castle, A.L.6
Filmore, J.7
Shulman, G.I.8
Le Roith, D.9
-
6
-
-
0035852760
-
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice
-
Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, and Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98: 2005-2010, 2001.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 2005-2010
-
-
Fruebis, J.1
Tsao, T.S.2
Javorschi, S.3
Ebbets-Reed, D.4
Erickson, M.R.5
Yen, F.T.6
Bihain, B.E.7
Lodish, H.F.8
-
7
-
-
0034096988
-
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients
-
Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, and Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20: 1595-1599, 2000.
-
(2000)
Arterioscler Thromb Vasc Biol
, vol.20
, pp. 1595-1599
-
-
Hotta, K.1
Funahashi, T.2
Arita, Y.3
Takahashi, M.4
Matsuda, M.5
Okamoto, Y.6
Iwahashi, H.7
Kuriyama, H.8
Ouchi, N.9
Maeda, K.10
Nishida, M.11
Kihara, S.12
Sakai, N.13
Nakajima, T.14
Hasegawa, K.15
Muraguchi, M.16
Ohmoto, Y.17
Nakamura, T.18
Yamashita, S.19
Hanafusa, T.20
Matsuzawa, Y.21
more..
-
8
-
-
17544382289
-
AdipoQ is a novel adipose-specific gene dysregulated in obesity
-
Hu E, Liang P, and Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271: 10697-10703, 1996.
-
(1996)
J Biol Chem
, vol.271
, pp. 10697-10703
-
-
Hu, E.1
Liang, P.2
Spiegelman, B.M.3
-
9
-
-
17444411871
-
Regulation of adiponectin receptor gene expression in diabetic mice
-
Inukai K, Nakashima Y, Watanabe M, Takata N, Sawa T, Kurihara S, Awata T, and Katayama S. Regulation of adiponectin receptor gene expression in diabetic mice. Am J Physiol Endocrinol Metab 288: E876-E882, 2005.
-
(2005)
Am J Physiol Endocrinol Metab
, vol.288
-
-
Inukai, K.1
Nakashima, Y.2
Watanabe, M.3
Takata, N.4
Sawa, T.5
Kurihara, S.6
Awata, T.7
Katayama, S.8
-
10
-
-
0037677767
-
Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors
-
Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, and Shimomura I. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52: 1655-1663, 2003.
-
(2003)
Diabetes
, vol.52
, pp. 1655-1663
-
-
Iwaki, M.1
Matsuda, M.2
Maeda, N.3
Funahashi, T.4
Matsuzawa, Y.5
Makishima, M.6
Shimomura, I.7
-
11
-
-
18844432308
-
Adiponectin and adiponectin receptors
-
Kadowaki T and Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 26: 439-451, 2005.
-
(2005)
Endocr Rev
, vol.26
, pp. 439-451
-
-
Kadowaki, T.1
Yamauchi, T.2
-
12
-
-
0033791103
-
Continuous production and recovery of recombinant Ca++ binding receptor from HEK 293 cells using perfusion though a packed bed bioreactor
-
Kaufman J, Wang G, Zhang W, Valle M, and Shiloach J. Continuous production and recovery of recombinant Ca++ binding receptor from HEK 293 cells using perfusion though a packed bed bioreactor. Cytotechnology 33: 3-11, 2000.
-
(2000)
Cytotechnology
, vol.33
, pp. 3-11
-
-
Kaufman, J.1
Wang, G.2
Zhang, W.3
Valle, M.4
Shiloach, J.5
-
13
-
-
12944319825
-
Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes
-
Kim H, Haluzik M, Gavrilova O, Yakar S, Portas J, Sun H, Pajvani UB, Scherer PE, and LeRoith D. Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes. Diabetologia 47: 2215-2225, 2004.
-
(2004)
Diabetologia
, vol.47
, pp. 2215-2225
-
-
Kim, H.1
Haluzik, M.2
Gavrilova, O.3
Yakar, S.4
Portas, J.5
Sun, H.6
Pajvani, U.B.7
Scherer, P.E.8
Leroith, D.9
-
14
-
-
19944379835
-
Beneficial effects of fenofibrate to improve endothelial dysfunction and raise adiponectin levels in patients with primary hypertriglyceridemia
-
Koh KK, Han SH, Quon MJ, Yeal Ahn J, and Shin EK. Beneficial effects of fenofibrate to improve endothelial dysfunction and raise adiponectin levels in patients with primary hypertriglyceridemia. Diabetes Care 28: 1419-1424, 2005.
-
(2005)
Diabetes Care
, vol.28
, pp. 1419-1424
-
-
Koh, K.K.1
Han, S.H.2
Quon, M.J.3
Yeal Ahn, J.4
Shin, E.K.5
-
15
-
-
20044375205
-
Vascular and metabolic effects of combined therapy with ramipril and simvastatin in patients with type 2 diabetes
-
Koh KK, Quon MJ, Han SH, Ahn JY, Jin DK, Kim HS, Kim DS, and Shin EK. Vascular and metabolic effects of combined therapy with ramipril and simvastatin in patients with type 2 diabetes. Hypertension 45: 1088-1093, 2005.
-
(2005)
Hypertension
, vol.45
, pp. 1088-1093
-
-
Koh, K.K.1
Quon, M.J.2
Han, S.H.3
Ahn, J.Y.4
Jin, D.K.5
Kim, H.S.6
Kim, D.S.7
Shin, E.K.8
-
16
-
-
20844456215
-
Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients
-
Koh KK, Quon MJ, Han SH, Chung WJ, Ahn JY, Seo YH, Kang MH, Ahn TH, Choi IS, and Shin EK. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 110: 3687-3692, 2004.
-
(2004)
Circulation
, vol.110
, pp. 3687-3692
-
-
Koh, K.K.1
Quon, M.J.2
Han, S.H.3
Chung, W.J.4
Ahn, J.Y.5
Seo, Y.H.6
Kang, M.H.7
Ahn, T.H.8
Choi, I.S.9
Shin, E.K.10
-
17
-
-
18944381282
-
Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of patients with combined hyperlipidemia
-
Koh KK, Quon MJ, Han SH, Chung WJ, Ahn JY, Seo YH, Kang WC, and Shin EK. Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of patients with combined hyperlipidemia. J Am Coll Cardiol 45: 1649-1653, 2005.
-
(2005)
J Am Coll Cardiol
, vol.45
, pp. 1649-1653
-
-
Koh, K.K.1
Quon, M.J.2
Han, S.H.3
Chung, W.J.4
Ahn, J.Y.5
Seo, Y.H.6
Kang, W.C.7
Shin, E.K.8
-
18
-
-
0037135523
-
Disruption of adiponectin causes insulin resistance and neointimal formation
-
Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, and Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277: 25863-25866, 2002.
-
(2002)
J Biol Chem
, vol.277
, pp. 25863-25866
-
-
Kubota, N.1
Terauchi, Y.2
Yamauchi, T.3
Kubota, T.4
Moroi, M.5
Matsui, J.6
Eto, K.7
Yamashita, T.8
Kamon, J.9
Satoh, H.10
Yano, W.11
Froguel, P.12
Nagai, R.13
Kimura, S.14
Kadowaki, T.15
Noda, T.16
-
19
-
-
0036063777
-
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30
-
Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, and Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8: 731-737, 2002.
-
(2002)
Nat Med
, vol.8
, pp. 731-737
-
-
Maeda, N.1
Shimomura, I.2
Kishida, K.3
Nishizawa, H.4
Matsuda, M.5
Nagaretani, H.6
Furuyama, N.7
Kondo, H.8
Takahashi, M.9
Arita, Y.10
Komuro, R.11
Ouchi, N.12
Kihara, S.13
Tochino, Y.14
Okutomi, K.15
Horie, M.16
Takeda, S.17
Aoyama, T.18
Funahashi, T.19
Matsuzawa, Y.20
more..
-
20
-
-
0035462629
-
PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein
-
Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, and Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50: 2094-2099, 2001.
-
(2001)
Diabetes
, vol.50
, pp. 2094-2099
-
-
Maeda, N.1
Takahashi, M.2
Funahashi, T.3
Kihara, S.4
Nishizawa, H.5
Kishida, K.6
Nagaretani, H.7
Matsuda, M.8
Komuro, R.9
Ouchi, N.10
Kuriyama, H.11
Hotta, K.12
Nakamura, T.13
Shimomura, I.14
Matsuzawa, Y.15
-
21
-
-
0037984387
-
Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity
-
Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, and Scherer PE. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem 278: 9073-9085, 2003.
-
(2003)
J Biol Chem
, vol.278
, pp. 9073-9085
-
-
Pajvani, U.B.1
Du, X.2
Combs, T.P.3
Berg, A.H.4
Rajala, M.W.5
Schulthess, T.6
Engel, J.7
Brownlee, M.8
Scherer, P.E.9
-
22
-
-
11144355637
-
Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity
-
Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, and Scherer PE. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279: 12152-12162, 2004.
-
(2004)
J Biol Chem
, vol.279
, pp. 12152-12162
-
-
Pajvani, U.B.1
Hawkins, M.2
Combs, T.P.3
Rajala, M.W.4
Doebber, T.5
Berger, J.P.6
Wagner, J.A.7
Wu, M.8
Knopps, A.9
Xiang, A.H.10
Utzschneider, K.M.11
Kahn, S.E.12
Olefsky, J.M.13
Buchanan, T.A.14
Scherer, P.E.15
-
23
-
-
2442659256
-
Adiponectin acts in the brain to decrease body weight
-
Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, and Ahima RS. Adiponectin acts in the brain to decrease body weight. Nat Med 10: 524-529, 2004.
-
(2004)
Nat Med
, vol.10
, pp. 524-529
-
-
Qi, Y.1
Takahashi, N.2
Hileman, S.M.3
Patel, H.R.4
Berg, A.H.5
Pajvani, U.B.6
Scherer, P.E.7
Ahima, R.S.8
-
24
-
-
2342430250
-
Obesity, insulin resistance, and cardiovascular disease
-
Reaven G, Abbasi F, and McLaughlin T. Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res 59: 207-223, 2004.
-
(2004)
Recent Prog Horm Res
, vol.59
, pp. 207-223
-
-
Reaven, G.1
Abbasi, F.2
McLaughlin, T.3
-
25
-
-
4344713648
-
Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism
-
Staiger H, Kaltenbach S, Staiger K, Stefan N, Fritsche A, Guirguis A, Peterfi C, Weisser M, Machicao F, Stumvoll M, and Haring HU. Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism. Diabetes 53: 2195-2201, 2004.
-
(2004)
Diabetes
, vol.53
, pp. 2195-2201
-
-
Staiger, H.1
Kaltenbach, S.2
Staiger, K.3
Stefan, N.4
Fritsche, A.5
Guirguis, A.6
Peterfi, C.7
Weisser, M.8
Machicao, F.9
Stumvoll, M.10
Haring, H.U.11
-
26
-
-
0037059013
-
Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation
-
Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF, and Ruderman NB. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99: 16309-16313, 2002.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 16309-16313
-
-
Tomas, E.1
Tsao, T.S.2
Saha, A.K.3
Murrey, H.E.4
Zhang, Cc.C.5
Itani, S.I.6
Lodish, H.F.7
Ruderman, N.B.8
-
27
-
-
0347379841
-
Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways
-
Tsao TS, Tomas E, Murrey HE, Hug C, Lee DH, Ruderman NB, Heuser JE, and Lodish HF. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem 278: 50810-50817, 2003.
-
(2003)
J Biol Chem
, vol.278
, pp. 50810-50817
-
-
Tsao, T.S.1
Tomas, E.2
Murrey, H.E.3
Hug, C.4
Lee, D.H.5
Ruderman, N.B.6
Heuser, J.E.7
Lodish, H.F.8
-
28
-
-
3142701401
-
Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity
-
Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, Kamon J, Kobayashi M, Suzuki R, Hara K, Kubota N, Terauchi Y, Froguel P, Nakae J, Kasuga M, Accili D, Tobe K, Ueki K, Nagai R, and Kadowaki T. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 279: 30817-30822, 2004.
-
(2004)
J Biol Chem
, vol.279
, pp. 30817-30822
-
-
Tsuchida, A.1
Yamauchi, T.2
Ito, Y.3
Hada, Y.4
Maki, T.5
Takekawa, S.6
Kamon, J.7
Kobayashi, M.8
Suzuki, R.9
Hara, K.10
Kubota, N.11
Terauchi, Y.12
Froguel, P.13
Nakae, J.14
Kasuga, M.15
Accili, D.16
Tobe, K.17
Ueki, K.18
Nagai, R.19
Kadowaki, T.20
more..
-
29
-
-
0141924849
-
Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin
-
Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel P, Kimura S, Nagai R, and Kadowaki T. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 278: 40352-40363, 2003.
-
(2003)
J Biol Chem
, vol.278
, pp. 40352-40363
-
-
Waki, H.1
Yamauchi, T.2
Kamon, J.3
Ito, Y.4
Uchida, S.5
Kita, S.6
Hara, K.7
Hada, Y.8
Vasseur, F.9
Froguel, P.10
Kimura, S.11
Nagai, R.12
Kadowaki, T.13
-
30
-
-
0034999667
-
Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
-
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, and Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86: 1930-1935, 2001.
-
(2001)
J Clin Endocrinol Metab
, vol.86
, pp. 1930-1935
-
-
Weyer, C.1
Funahashi, T.2
Tanaka, S.3
Hotta, K.4
Matsuzawa, Y.5
Pratley, R.E.6
Tataranni, P.A.7
-
31
-
-
0037983775
-
Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes
-
Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, and Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52: 1355-1363, 2003.
-
(2003)
Diabetes
, vol.52
, pp. 1355-1363
-
-
Wu, X.1
Motoshima, H.2
Mahadev, K.3
Stalker, T.J.4
Scalia, R.5
Goldstein, B.J.6
-
32
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, and Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762-769, 2003.
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Ito, Y.3
Tsuchida, A.4
Yokomizo, T.5
Kita, S.6
Sugiyama, T.7
Miyagishi, M.8
Hara, K.9
Tsunoda, M.10
Murakami, K.11
Ohteki, T.12
Uchida, S.13
Takekawa, S.14
Waki, H.15
Tsuno, N.H.16
Shibata, Y.17
Terauchi, Y.18
Froguel, P.19
Tobe, K.20
Koyasu, S.21
Taira, K.22
Kitamura, T.23
Shimizu, T.24
Nagai, R.25
Kadowaki, T.26
more..
-
33
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, and Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8: 1288-1295, 2002.
-
(2002)
Nat Med
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
Ito, Y.4
Waki, H.5
Uchida, S.6
Yamashita, S.7
Noda, M.8
Kita, S.9
Ueki, K.10
Eto, K.11
Akanuma, Y.12
Froguel, P.13
Foufelle, F.14
Ferre, P.15
Carling, D.16
Kimura, S.17
Nagai, R.18
Kahn, B.B.19
Kadowaki, T.20
more..
-
34
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, and Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7: 941-946, 2001.
-
(2001)
Nat Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
Akanuma, Y.12
Gavrilova, O.13
Vinson, C.14
Reitman, M.L.15
Kagechika, H.16
Shudo, K.17
Yoda, M.18
Nakano, Y.19
Tobe, K.20
Nagai, R.21
Kimura, S.22
Tomita, M.23
Froguel, P.24
Kadowaki, T.25
more..
-
35
-
-
7044247671
-
Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes
-
Zhao H, Yakar S, Gavrilova O, Sun H, Zhang Y, Kim H, Setser J, Jou W, and LeRoith D. Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes 53: 2901-2909, 2004.
-
(2004)
Diabetes
, vol.53
, pp. 2901-2909
-
-
Zhao, H.1
Yakar, S.2
Gavrilova, O.3
Sun, H.4
Zhang, Y.5
Kim, H.6
Setser, J.7
Jou, W.8
LeRoith, D.9
|