-
1
-
-
0004283843
-
-
Henser International: Berlin, Chapter 6
-
Schnabel, W. Polymer Degradation; Henser International: Berlin, 1981; Chapter 6.
-
(1981)
Polymer Degradation
-
-
Schnabel, W.1
-
2
-
-
0034246494
-
-
(a) Wool, R. P.; Raghavan, D.; Wagner, G. C.; Billieux, S. J. Appl. Polym. Sci. 2000, 77, 1643-1657.
-
(2000)
J. Appl. Polym. Sci.
, vol.77
, pp. 1643-1657
-
-
Wool, R.P.1
Raghavan, D.2
Wagner, G.C.3
Billieux, S.4
-
3
-
-
0037778600
-
-
(b) Moreno-Chulim, M. V.; Barahona-Perez, F.; Canche-Escamilla, G. J. Appl. Polym. Sci. 2003, 89, 2764-2770.
-
(2003)
J. Appl. Polym. Sci.
, vol.89
, pp. 2764-2770
-
-
Moreno-Chulim, M.V.1
Barahona-Perez, F.2
Canche-Escamilla, G.3
-
4
-
-
0037099374
-
-
(a) Star, A.; Steuerman, D. W.; Heath, J. R.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 2508-2512.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 2508-2512
-
-
Star, A.1
Steuerman, D.W.2
Heath, J.R.3
Stoddart, J.F.4
-
5
-
-
0141485641
-
-
About the time this paper appeared, it was reported that aqueous solutions of the acidic polysaccharide, gum arabic, produced by Acacia Senegal trees, assists in the dispersal of SWNTs in water. See: (b) Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Yerushalmi-Rozen, R. Nano Lett. 2002, 2, 25-28.
-
(2002)
Nano Lett.
, vol.2
, pp. 25-28
-
-
Bandyopadhyaya, R.1
Nativ-Roth, E.2
Regev, O.3
Yerushalmi-Rozen, R.4
-
6
-
-
0037448921
-
-
Subsequently, it was shown the SWNTs can be solubilized simply and efficiently with amylose in aqueous dimethyl sulfoxide: the best solvent ratio is one that contains 10-20% dimethyl sulfoxide. See: (c) Kim, O.-K.; Je, J.; Baldwin, J. W.; Kooi, S.; Pehrsson, P. E.; Buckkey, L. J. J. Am. Chem. Soc. 2003, 125, 4426-4427.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 4426-4427
-
-
Kim, O.-K.1
Je, J.2
Baldwin, J.W.3
Kooi, S.4
Pehrsson, P.E.5
Buckkey, L.J.6
-
7
-
-
2442663933
-
-
Very recently, it has been shown that both curdlan and schizophyllan (β-1,3-glucans) can entrap SWNTs in their helical super-structures. See: (d) Numata, M.; Asai, M.; Kaneko, K.; Hasegawa, T.; Fujita, N.; Kitada, Y.; Sakurai, K.; Shinkai, S. Chem. Lett. 2004, 33, 232-233.
-
(2004)
Chem. Lett.
, vol.33
, pp. 232-233
-
-
Numata, M.1
Asai, M.2
Kaneko, K.3
Hasegawa, T.4
Fujita, N.5
Kitada, Y.6
Sakurai, K.7
Shinkai, S.8
-
11
-
-
0003978810
-
-
CRC Press, Inc.: Boca Raton
-
Among the numerous enzymes that will hydrolyze starch, there is amyloglucosidase, an exoamylase which attacks all the α-1,4 and α-1,6 glucosidic linkages to produce glucose. For more information about the properties of this and other glucosidases, see: Yamamoto, T. Enzyme Chemistry and Molecular Biology of Amylases and Related Enzymes; CRC Press, Inc.: Boca Raton, 1995; pp 3-201. α-Amylase, which is present in human saliva, is an endoamylase which attacks the α-1,4 glucosidic linkages in starch randomly and so reduces the lengths of the glucan chains drastically.
-
(1995)
Enzyme Chemistry and Molecular Biology of Amylases and Related Enzymes
, pp. 3-201
-
-
Yamamoto, T.1
-
12
-
-
3142723303
-
-
note
-
2O. The topographical data were recorded with a Digital Instruments Multimode AFM equipped with a high-resolution stage and controlled by a Nanoscope IIIa scanning probe microscope controller with a Nanoscope Extender. The images were taken with standard tips in tapping mode at a scan rate of 1.5 Hz.
-
-
-
-
13
-
-
3142763093
-
-
note
-
Diatomeceous earth - a substance made up from crushed fossils of freshwater organisms and marine life - is an additive to amyloglucosidase from Rhizopus sp. (Sigma).
-
-
-
-
14
-
-
3142729205
-
-
note
-
4 vapor for 1 min. High-resolution TEM (HRTEM) images were obtained using a 002B-TOPCON microscope at 120 kV in the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory.
-
-
-
-
15
-
-
0031186079
-
-
2O (20 mg) to a 10 wt % solution of sodium hypochlorite (1 mL) in an 8 mL vial. The mixture was immediately capped. The TEM grid was attached to the bottom of the vial cap to expose grid to the staining vapors. For the staining procedure, see: Brown, G. M.; Butler, J. H. Polymer 1997, 38, 3937-3945.
-
(1997)
Polymer
, vol.38
, pp. 3937-3945
-
-
Brown, G.M.1
Butler, J.H.2
-
16
-
-
0032492884
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(1998)
Nature
, vol.393
, pp. 49-52
-
-
Tans, S.J.1
Verschueren, R.M.2
Dekker, C.3
-
17
-
-
0005836651
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2447-2449
-
-
Martel, R.1
Schmidt, T.2
Shea, H.R.3
Hertel, T.4
Avouris, P.5
-
18
-
-
0035834444
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2001)
Science
, vol.294
, pp. 1317-1320
-
-
Bachtold, A.1
Hadley, P.2
Nakanishi, T.3
Dekker, C.4
-
19
-
-
0037134581
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 2890-2893
-
-
Kong, J.1
Dai, H.2
-
20
-
-
0035929941
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 11512-11513
-
-
Shim, M.1
Javey, A.2
Kam, N.W.S.3
Dai, H.4
-
21
-
-
79956000382
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 2773-2775
-
-
Derycke, V.1
Martel, R.2
Appenzeller, J.3
Avouris, P.4
-
22
-
-
0001074022
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2002)
Nano Lett.
, vol.2
, pp. 755-759
-
-
Fuhrer, M.S.1
Kim, B.M.2
Dürkop, T.3
Brintlinger, T.4
-
23
-
-
0000680281
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2002)
Nano Lett.
, vol.2
, pp. 761-764
-
-
Radosavljevic, M.1
Freitag, M.2
Thadani, K.V.3
Johnson, A.T.4
-
24
-
-
0141744878
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2003)
Nano Lett.
, vol.3
, pp. 639-641
-
-
Bradley, K.1
Cumings, J.2
Star, A.3
Gabriel, J.-C.P.4
Grüner, G.5
-
25
-
-
0037741962
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2003)
Science
, vol.300
, pp. 783-786
-
-
Misewich, J.A.1
Martel, R.2
Avouris, P.3
Tsang, J.C.4
Heinze, S.5
Tersoff, J.6
-
26
-
-
0042991275
-
-
For examples of the use of carbon nanotube FET devices, see: (a) Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49-52. (b) Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447-2449. (c) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320. (d) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (e) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (f) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Appl. Phys. Lett. 2002, 80, 2773-2775. (g) Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755-759. (h) Radosavljevic, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nano Lett. 2002, 2, 761-764. (i) Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.-C. P.; Grüner, G. Nano Lett. 2003, 3, 639-641. (j) Misewich, J. A.; Martel, R.; Avouris, Ph.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786. (k) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654-657.
-
(2003)
Nature
, vol.424
, pp. 654-657
-
-
Javey, A.1
Guo, J.2
Wang, Q.3
Lundstrom, M.4
Dai, H.5
-
27
-
-
0034629474
-
-
For examples of chemical sensing using carbon nanotubes, see: (a) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801-1804. (b) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622-625. (c) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384-1386. (d) Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Nano Lett. 2003, 3, 347-351. (e) Star, A.; Han, T.-R.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 1421-1423.
-
(2000)
Science
, vol.287
, pp. 1801-1804
-
-
Collins, P.G.1
Bradley, K.2
Ishigami, M.3
Zettl, A.4
-
28
-
-
0034723410
-
-
For examples of chemical sensing using carbon nanotubes, see: (a) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801-1804. (b) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622-625. (c) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384-1386. (d) Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Nano Lett. 2003, 3, 347-351. (e) Star, A.; Han, T.-R.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 1421-1423.
-
(2000)
Science
, vol.287
, pp. 622-625
-
-
Kong, J.1
Franklin, N.R.2
Zhou, C.3
Chapline, M.G.4
Peng, S.5
Cho, K.6
Dai, H.7
-
29
-
-
0035860306
-
-
For examples of chemical sensing using carbon nanotubes, see: (a) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801-1804. (b) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622-625. (c) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384-1386. (d) Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Nano Lett. 2003, 3, 347-351. (e) Star, A.; Han, T.-R.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 1421-1423.
-
(2001)
Adv. Mater.
, vol.13
, pp. 1384-1386
-
-
Kong, J.1
Chapline, M.G.2
Dai, H.3
-
30
-
-
0038262624
-
-
For examples of chemical sensing using carbon nanotubes, see: (a) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801-1804. (b) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622-625. (c) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384-1386. (d) Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Nano Lett. 2003, 3, 347-351. (e) Star, A.; Han, T.-R.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 1421-1423.
-
(2003)
Nano Lett.
, vol.3
, pp. 347-351
-
-
Qi, P.1
Vermesh, O.2
Grecu, M.3
Javey, A.4
Wang, Q.5
Dai, H.6
Peng, S.7
Cho, K.J.8
-
31
-
-
0242287929
-
-
For examples of chemical sensing using carbon nanotubes, see: (a) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801-1804. (b) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622-625. (c) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384-1386. (d) Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Nano Lett. 2003, 3, 347-351. (e) Star, A.; Han, T.-R.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 1421-1423.
-
(2003)
Nano Lett.
, vol.3
, pp. 1421-1423
-
-
Star, A.1
Han, T.-R.2
Gabriel, J.-C.P.3
Bradley, K.4
Grüner, G.5
-
32
-
-
0141521706
-
-
For recent examples of biosensors based on carbon nanotube FETs, see: (a) Star, A.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 459-463. (b) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Wong Shi Kam, N.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984-4989. (c) Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727-730. (d) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (e) Bradley, K.; Briman, M.; Star, A.; Grüner, G. Nano Lett. 2004, 4, 253-256. (f) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y.-L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563-1568.
-
(2003)
Nano Lett.
, vol.3
, pp. 459-463
-
-
Star, A.1
Gabriel, J.-C.P.2
Bradley, K.3
Grüner, G.4
-
33
-
-
0037967030
-
-
For recent examples of biosensors based on carbon nanotube FETs, see: (a) Star, A.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 459-463. (b) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Wong Shi Kam, N.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984-4989. (c) Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727-730. (d) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (e) Bradley, K.; Briman, M.; Star, A.; Grüner, G. Nano Lett. 2004, 4, 253-256. (f) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y.-L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563-1568.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4984-4989
-
-
Chen, R.J.1
Bangsaruntip, S.2
Drouvalakis, K.A.3
Wong Shi Kam, N.4
Shim, M.5
Li, Y.6
Kim, W.7
Utz, P.J.8
Dai, H.9
-
34
-
-
0141521856
-
-
For recent examples of biosensors based on carbon nanotube FETs, see: (a) Star, A.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 459-463. (b) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Wong Shi Kam, N.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984-4989. (c) Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727-730. (d) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (e) Bradley, K.; Briman, M.; Star, A.; Grüner, G. Nano Lett. 2004, 4, 253-256. (f) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y.-L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563-1568.
-
(2003)
Nano Lett.
, vol.3
, pp. 727-730
-
-
Besteman, K.1
Lee, J.-O.2
Wiertz, F.G.M.3
Heering, H.A.4
Dekker, C.5
-
35
-
-
0038142204
-
-
For recent examples of biosensors based on carbon nanotube FETs, see: (a) Star, A.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 459-463. (b) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Wong Shi Kam, N.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984-4989. (c) Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727-730. (d) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (e) Bradley, K.; Briman, M.; Star, A.; Grüner, G. Nano Lett. 2004, 4, 253-256. (f) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y.-L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563-1568.
-
(2003)
Chem. Commun.
, pp. 1502-1503
-
-
Boussaad, S.1
Tao, N.J.2
Zhang, R.3
Hopson, T.4
Nagahara, L.A.5
-
36
-
-
1442348919
-
-
For recent examples of biosensors based on carbon nanotube FETs, see: (a) Star, A.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 459-463. (b) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Wong Shi Kam, N.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984-4989. (c) Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727-730. (d) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (e) Bradley, K.; Briman, M.; Star, A.; Grüner, G. Nano Lett. 2004, 4, 253-256. (f) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y.-L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563-1568.
-
(2004)
Nano Lett.
, vol.4
, pp. 253-256
-
-
Bradley, K.1
Briman, M.2
Star, A.3
Grüner, G.4
-
37
-
-
1042299851
-
-
For recent examples of biosensors based on carbon nanotube FETs, see: (a) Star, A.; Gabriel, J.-C. P.; Bradley, K.; Grüner, G. Nano Lett. 2003, 3, 459-463. (b) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Wong Shi Kam, N.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984-4989. (c) Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727-730. (d) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (e) Bradley, K.; Briman, M.; Star, A.; Grüner, G. Nano Lett. 2004, 4, 253-256. (f) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y.-L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563-1568.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 1563-1568
-
-
Chen, R.J.1
Choi, H.C.2
Bangsaruntip, S.3
Yenilmez, E.4
Tang, X.5
Wang, Q.6
Chang, Y.-L.7
Dai, H.8
-
38
-
-
4644282669
-
-
2 gas mixture at 900°C. Electrical leads were patterned on top of the nanotubes from Ti films 35 nm thick, capped with Au layers 5 nm thick, with a spacing of 0.75 μm between the source and drain. The experimental details relating to the NTFET device fabrication have been published. See: Gabriel, J.-C. P. Mater. Res. Soc. Symp. Proc. 2003, 776, Q12.7.1-7.
-
(2003)
Mater. Res. Soc. Symp. Proc.
, vol.776
-
-
Gabriel, J.-C.P.1
-
39
-
-
3142773427
-
-
note
-
Electronic measurements on NTFET devices, such as current flow between S/D electrodes as function of applied gate voltage, were conducted using a semiconductor parameter analyzer (Keithley 4200).
-
-
-
-
40
-
-
3142704358
-
-
note
-
Since these deposition conditions are the same (ref 6), we can assume similar thicknesses for the starch layer to those measured by AFM on clean Si wafers, i.e., 30-100 nm uneven deposit. Moreover, since the starch deposit cannot interfere physically with the NTFET integrated circuit, only a charge-transfer interaction involving the starch is expected.
-
-
-
-
41
-
-
3142708686
-
-
note
-
+ = -2.4).
-
-
-
-
42
-
-
3142715944
-
-
See ref 13e
-
g characteristics and time-dependent transconductance measurements, can be conducted in a buffer using a liquid gate. See ref 13e. The real time detection of enzymatic hydrolysis of starch in the buffer is under investigation at present.
-
-
-
|