-
1
-
-
0035834444
-
-
Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317-1320.
-
(2001)
Science
, vol.294
, pp. 1317-1320
-
-
Bachtold, A.1
Hadley, P.2
Nakanishi, T.3
Dekker, C.4
-
2
-
-
0005836651
-
-
Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Appl. Phys. Lett. 1998, 73, 2447.
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2447
-
-
Martel, R.1
Schmidt, T.2
Shea, H.R.3
Hertel, T.4
Avouris, Ph.5
-
3
-
-
0034629474
-
-
(a) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801.
-
(2000)
Science
, vol.287
, pp. 1801
-
-
Collins, P.G.1
Bradley, K.2
Ishigami, M.3
Zettl, A.4
-
4
-
-
0034723410
-
-
(b) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622.
-
(2000)
Science
, vol.287
, pp. 622
-
-
Kong, J.1
Franklin, N.R.2
Zhou, C.3
Chapline, M.G.4
Peng, S.5
Cho, K.6
Dai, H.7
-
5
-
-
0034827512
-
-
(c) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem Soc. 2001, 123, 3838-3839.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 3838-3839
-
-
Chen, R.J.1
Zhang, Y.2
Wang, D.3
Dai, H.4
-
6
-
-
0002990922
-
-
Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y.; Dai, H. Nano Lett. 2002, 2, 285-288.
-
(2002)
Nano Lett.
, vol.2
, pp. 285-288
-
-
Shim, M.1
Kam, N.W.S.2
Chen, R.J.3
Li, Y.4
Dai, H.5
-
7
-
-
0035902938
-
-
Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289-1292.
-
(2001)
Science
, vol.293
, pp. 1289-1292
-
-
Cui, Y.1
Wei, Q.2
Park, H.3
Lieber, C.M.4
-
8
-
-
0033549489
-
-
Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. Angew. Chem., Int. Ed. Engl. 1999, 38, 1912-1915.
-
(1999)
Angew. Chem., Int. Ed. Engl.
, vol.38
, pp. 1912-1915
-
-
Balavoine, F.1
Schultz, P.2
Richard, C.3
Mallouh, V.4
Ebbesen, T.W.5
Mioskowski, C.6
-
10
-
-
0037798430
-
-
(a) Baker, S. E.; Cai, W.; Lasseter, T. L.; Weidkamp, K. P.; Hamers, R. J. Nano Lett. 2002, 2, 1413-1417.
-
(2002)
Nano Lett.
, vol.2
, pp. 1413-1417
-
-
Baker, S.E.1
Cai, W.2
Lasseter, T.L.3
Weidkamp, K.P.4
Hamers, R.J.5
-
11
-
-
0000308990
-
-
(b) Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y.-P. Nano Lett. 2002, 2, 311-314.
-
(2002)
Nano Lett.
, vol.2
, pp. 311-314
-
-
Huang, W.1
Taylor, S.2
Fu, K.3
Lin, Y.4
Zhang, D.5
Hanks, T.W.6
Rao, A.M.7
Sun, Y.-P.8
-
12
-
-
0035805334
-
-
(a) Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Angew. Chem., Int. Ed. 2001, 40, 1721-1725.
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 1721-1725
-
-
Star, A.1
Stoddart, J.F.2
Steuerman, D.3
Diehl, M.4
Boukai, A.5
Wong, E.W.6
Yang, X.7
Chung, S.W.8
Choi, H.9
Heath, J.R.10
-
13
-
-
0003381070
-
-
(b) O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y. H. ; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265-271.
-
(2001)
Chem. Phys. Lett.
, vol.342
, pp. 265-271
-
-
O'Connell, M.J.1
Boul, P.2
Ericson, L.M.3
Huffman, C.4
Wang, Y.H.5
Haroz, E.6
Kuper, C.7
Tour, J.8
Ausman, K.D.9
Smalley, R.E.10
-
14
-
-
0037099374
-
-
(c) Star, A.; Steuerman, D. W.; Heath, J. R.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 2508-2512.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 2508-2512
-
-
Star, A.1
Steuerman, D.W.2
Heath, J.R.3
Stoddart, J.F.4
-
15
-
-
0035929941
-
-
Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. J. Am. Chem. Soc. 2001, 123, 11512-11513.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 11512-11513
-
-
Shim, M.1
Javey, A.2
Kam, N.W.S.3
Dai, H.J.4
-
16
-
-
0035807149
-
-
and references therein
-
Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. Langmuir 2001, 17, 5605-5620, and references therein.
-
(2001)
Langmuir
, vol.17
, pp. 5605-5620
-
-
Ostuni, E.1
Chapman, R.G.2
Holmlin, R.E.3
Takayama, S.4
Whitesides, G.M.5
-
18
-
-
0028102849
-
-
(b) Vajda, S.; Weng, Z.; Rosenfeld, R.; DeLisi, C. Biochemistry 1994, 33, 13977-13988.
-
(1994)
Biochemistry
, vol.33
, pp. 13977-13988
-
-
Vajda, S.1
Weng, Z.2
Rosenfeld, R.3
DeLisi, C.4
-
19
-
-
0141581707
-
-
submitted for publication
-
Star, A.; Han, T. R.; Gabriel, J.-C.; Bradley, K.; Gruner, G. "Electronic Detection in Liquids Using Nanotube FET Devices", submitted for publication.
-
Electronic Detection in Liquids Using Nanotube FET Devices
-
-
Star, A.1
Han, T.R.2
Gabriel, J.-C.3
Bradley, K.4
Gruner, G.5
-
20
-
-
0029847399
-
-
2) using a home-built apparatus. In a typical experiment, the wafer is covered with patterned photoresist and is spin coated with growth promoter containing nanoparticles of iron encased within a mesoporous material [(a) Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang G. Science 1996, 274, 1701-1703, (b) Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu, W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X. Nature 1998, 394, 631-632]. After liftoff in acetone, small patterned areas of the growth promoter are left on the wafer. The wafer is then introduced in a 5 in. tubular oven and treated at 900 °C in a methane and hydrogen flow for 15 min, allowing for the growth of SWCNT of 5-10 μm long and 1.5 to 3 nm in diameter. The hydrogen helps to prevent the deposition of amorphous carbon around the nanotubes as well as on the surface of the silicon [Ivanov V.; Nagy, J. B.; Lambin, Ph.; Lucas, A.; Zhang, X. B.; Zhang, X. F.; Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; Van Landuyt, J. Chem. Phys. Lett. 1994, 223, 329-335]. Standard optical lithography and metal deposition are used to form the metal contacts on top of the grown nanotubes. A fair proportion of the tens of thousands of devices made on each wafer are p-type FETs with a modulation of 1, indicating that only semiconducting nanotubes are present. The devices used in this study were selected from among those. An AFM image of a typical device is presented in Supporting Information.
-
(1996)
Science
, vol.274
, pp. 1701-1703
-
-
Li, W.Z.1
Xie, S.S.2
Qian, L.X.3
Chang, B.H.4
Zou, B.S.5
Zhou, W.Y.6
Zhao, R.A.7
Wang, G.8
-
21
-
-
0032514552
-
-
2) using a home-built apparatus. In a typical experiment, the wafer is covered with patterned photoresist and is spin coated with growth promoter containing nanoparticles of iron encased within a mesoporous material [(a) Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang G. Science 1996, 274, 1701-1703, (b) Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu, W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X. Nature 1998, 394, 631-632]. After liftoff in acetone, small patterned areas of the growth promoter are left on the wafer. The wafer is then introduced in a 5 in. tubular oven and treated at 900 °C in a methane and hydrogen flow for 15 min, allowing for the growth of SWCNT of 5-10 μm long and 1.5 to 3 nm in diameter. The hydrogen helps to prevent the deposition of amorphous carbon around the nanotubes as well as on the surface of the silicon [Ivanov V.; Nagy, J. B.; Lambin, Ph.; Lucas, A.; Zhang, X. B.; Zhang, X. F.; Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; Van Landuyt, J. Chem. Phys. Lett. 1994, 223, 329-335]. Standard optical lithography and metal deposition are used to form the metal contacts on top of the grown nanotubes. A fair proportion of the tens of thousands of devices made on each wafer are p-type FETs with a modulation of 1, indicating that only semiconducting nanotubes are present. The devices used in this study were selected from among those. An AFM image of a typical device is presented in Supporting Information.
-
(1998)
Nature
, vol.394
, pp. 631-632
-
-
Pan, Z.W.1
Xie, S.S.2
Chang, B.H.3
Wang, C.Y.4
Lu, L.5
Liu, W.6
Zhou, W.Y.7
Li, W.Z.8
Qian, L.X.9
-
22
-
-
4243732017
-
-
2) using a home-built apparatus. In a typical experiment, the wafer is covered with patterned photoresist and is spin coated with growth promoter containing nanoparticles of iron encased within a mesoporous material [(a) Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang G. Science 1996, 274, 1701-1703, (b) Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu, W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X. Nature 1998, 394, 631-632]. After liftoff in acetone, small patterned areas of the growth promoter are left on the wafer. The wafer is then introduced in a 5 in. tubular oven and treated at 900 °C in a methane and hydrogen flow for 15 min, allowing for the growth of SWCNT of 5-10 μm long and 1.5 to 3 nm in diameter. The hydrogen helps to prevent the deposition of amorphous carbon around the nanotubes as well as on the surface of the silicon [Ivanov V.; Nagy, J. B.; Lambin, Ph.; Lucas, A.; Zhang, X. B.; Zhang, X. F.; Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; Van Landuyt, J. Chem. Phys. Lett. 1994, 223, 329-335]. Standard optical lithography and metal deposition are used to form the metal contacts on top of the grown nanotubes. A fair proportion of the tens of thousands of devices made on each wafer are p-type FETs with a modulation of 1, indicating that only semiconducting nanotubes are present. The devices used in this study were selected from among those. An AFM image of a typical device is presented in Supporting Information.
-
(1994)
Chem. Phys. Lett.
, vol.223
, pp. 329-335
-
-
Ivanov, V.1
Nagy, J.B.2
Lambin, Ph.3
Lucas, A.4
Zhang, X.B.5
Zhang, X.F.6
Bernaerts, D.7
Van Tendeloo, G.8
Amelinckx, S.9
Van Landuyt, J.10
-
23
-
-
0141804862
-
-
note
-
Streptavidin is labeled with gold nanoparticles for the purpose of AFM imaging. Streptavidin (from Streptomyces avidinii, Sigma Chemicals) without gold labeling had similar effect on the device characteristic but could not be detected by AFM.
-
-
-
-
24
-
-
0034247521
-
-
(a) Jhi, S.-H.; Louie, S. G.; Cohen, M. L. Phys. Rev. Lett. 2000, 85, 1710-1713.
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1710-1713
-
-
Jhi, S.-H.1
Louie, S.G.2
Cohen, M.L.3
-
25
-
-
0037104198
-
-
(b) Ulbricht, H.; Moos, G.; Hertel, T. Phys. Rev. B 2002, 66, 075404.
-
(2002)
Phys. Rev. B
, vol.66
, pp. 075404
-
-
Ulbricht, H.1
Moos, G.2
Hertel, T.3
-
26
-
-
0141470041
-
-
note
-
g). Biotin-N-hydroxysuccinimide ester reacts readily with primary amines in PEI under ambient conditions, thus reducing the electron donating of PEI. However, after 1 h the yield of the reaction is only ∼75%; several hours are required to complete the reaction. The device characteristic at different stages of the biotinylation reaction is presented in Supporting Information.
-
-
-
-
28
-
-
0141693285
-
-
submitted for publication
-
Cumings, J.; Star, A.; Gabriel, J.-C.; Bradley, K.; Grüner, G. "Influence of Mobile Ions on Nanotube Based FET Devices", submitted for publication.
-
Influence of Mobile Ions on Nanotube Based FET Devices
-
-
Cumings, J.1
Star, A.2
Gabriel, J.-C.3
Bradley, K.4
Grüner, G.5
|