메뉴 건너뛰기




Volumn 10, Issue 10, 2004, Pages 2555-2564

Molecular shuttles based on tetrathiafulvalene units and 1,5-dioxynaphthalene ring systems

Author keywords

Molecular shuttles; Nanotechnology; NMR spectroscopy; Rotaxanes; Self assembly; Template synthesis

Indexed keywords

AROMATIC COMPOUNDS; ENTHALPY; NANOSTRUCTURED MATERIALS; NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY; SYNTHESIS (CHEMICAL);

EID: 2942612847     PISSN: 09476539     EISSN: None     Source Type: Journal    
DOI: 10.1002/chem.200305725     Document Type: Article
Times cited : (106)

References (76)
  • 5
    • 0034596923 scopus 로고    scopus 로고
    • d) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. 2000, 112, 3484-3530; Angew. Chem. Int. Ed. 2000, 39, 3348-3391;
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 3348-3391
  • 12
    • 0036260211 scopus 로고    scopus 로고
    • e) C. A. Stanier, S. J. Alderman, T. D. W. Claridge, H. L. Anderson, Angew. Chem. 2002, 114, 1847-1850; Angew. Chem. Int. Ed. 2002, 41, 1769-1772;
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 1769-1772
  • 23
    • 0037429907 scopus 로고    scopus 로고
    • Both semiconductors (Heath group at Caltech) and metals (Williams group at Hewlett Packard) have been used as the bottom electrode for molecular electronic devices incorporating bistable [2]catenanes and [2]rotaxanes. Recently, it has been established that the devices incorporating metals (See: Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olyniek, E. Anderson, Appl. Phys. Lett. 2003, 82, 1610-1612; Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, R. S. Williams, Nanotechnology 2003, 14, 462-468; D. R. Stewart, D. A A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, Nano Lett. 2004, 4, 133-136) as the bottom electrode do not switch as a result of a molecular-based process. Rather, the observed bistability is probably a result of reversible filament growth between the two electrodes. This result does not pertain, however, to devices incorporating semiconductors (polysilicon, for example) as the bottom electrode. To date, all of the available experimental evidence suggests that the devices incorporating semi-conducting bottom electrodes switch as a consequence of a molecularly based electromechanical mechanism at low bias voltages (± 2V).
    • (2003) Appl. Phys. Lett. , vol.82 , pp. 1610-1612
    • Chen, Y.1    Ohlberg, D.A.A.2    Li, X.3    Stewart, D.R.4    Williams, R.S.5    Jeppesen, J.O.6    Nielsen, K.A.7    Stoddart, J.F.8    Olyniek, D.L.9    Anderson, E.10
  • 24
    • 0037392525 scopus 로고    scopus 로고
    • Both semiconductors (Heath group at Caltech) and metals (Williams group at Hewlett Packard) have been used as the bottom electrode for molecular electronic devices incorporating bistable [2]catenanes and [2]rotaxanes. Recently, it has been established that the devices incorporating metals (See: Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olyniek, E. Anderson, Appl. Phys. Lett. 2003, 82, 1610-1612; Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, R. S. Williams, Nanotechnology 2003, 14, 462-468; D. R. Stewart, D. A A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, Nano Lett. 2004, 4, 133-136) as the bottom electrode do not switch as a result of a molecular-based process. Rather, the observed bistability is probably a result of reversible filament growth between the two electrodes. This result does not pertain, however, to devices incorporating semiconductors (polysilicon, for example) as the bottom electrode. To date, all of the available experimental evidence suggests that the devices incorporating semi-conducting bottom electrodes switch as a consequence of a molecularly based electromechanical mechanism at low bias voltages (± 2V).
    • (2003) Nanotechnology , vol.14 , pp. 462-468
    • Chen, Y.1    Jung, G.-Y.2    Ohlberg, D.A.A.3    Li, X.4    Stewart, D.R.5    Jeppesen, J.O.6    Nielsen, K.A.7    Stoddart, J.F.8    Williams, R.S.9
  • 25
    • 0842287335 scopus 로고    scopus 로고
    • Both semiconductors (Heath group at Caltech) and metals (Williams group at Hewlett Packard) have been used as the bottom electrode for molecular electronic devices incorporating bistable [2]catenanes and [2]rotaxanes. Recently, it has been established that the devices incorporating metals (See: Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olyniek, E. Anderson, Appl. Phys. Lett. 2003, 82, 1610-1612; Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, R. S. Williams, Nanotechnology 2003, 14, 462-468; D. R. Stewart, D. A A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, Nano Lett. 2004, 4, 133-136) as the bottom electrode do not switch as a result of a molecular-based process. Rather, the observed bistability is probably a result of reversible filament growth between the two electrodes. This result does not pertain, however, to devices incorporating semiconductors (polysilicon, for example) as the bottom electrode. To date, all of the available experimental evidence suggests that the devices incorporating semi-conducting bottom electrodes switch as a consequence of a molecularly based electromechanical mechanism at low bias voltages (± 2V).
    • (2004) Nano Lett. , vol.4 , pp. 133-136
    • Stewart, D.R.1    Ohlberg, D.A.A.2    Beck, P.A.3    Chen, Y.4    Williams, R.S.5    Jeppesen, J.O.6    Nielsen, K.A.7    Stoddart, J.F.8
  • 27
    • 0034596923 scopus 로고    scopus 로고
    • V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. 2000, 112, 3484-3530; Angew. Chem. Int. Ed. 2000, 39, 3348-3391.
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 3348-3391
  • 29
    • 0032536465 scopus 로고    scopus 로고
    • a) M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer, J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White, D. J. Williams, Angew. Chem. 1998, 110, 357-361; Angew. Chem. Int. Ed. 1998, 37, 333-337;
    • (1998) Angew. Chem. Int. Ed. , vol.37 , pp. 333-337
  • 38
    • 0042977662 scopus 로고    scopus 로고
    • in press results
    • 4+ ring is located around the TTF unit, the HOMO is localized on the TTF unit, while the LUMO is localized on the DNP ring system. In the metastable state, where the ring encircles the DNP ring system, the HOMO and LUMO are both delocalized across both recognition sites. See also a report on "Computational Nanotechnology" by E. K. Wilson, Chem. Eng. News 2003, April 28, 27-29.
    • Aust. J. Chem.
    • Flood, A.H.1    Ramirez, R.J.A.2    Deng, W.3    Muller, R.P.4    Goddard III, W.A.5    Stoddart, J.F.6
  • 39
    • 0037463889 scopus 로고    scopus 로고
    • April 28
    • 4+ ring is located around the TTF unit, the HOMO is localized on the TTF unit, while the LUMO is localized on the DNP ring system. In the metastable state, where the ring encircles the DNP ring system, the HOMO and LUMO are both delocalized across both recognition sites. See also a report on "Computational Nanotechnology" by E. K. Wilson, Chem. Eng. News 2003, April 28, 27-29.
    • (2003) Chem. Eng. News , pp. 27-29
    • Wilson, E.K.1
  • 40
    • 2942515189 scopus 로고    scopus 로고
    • note
    • -1.
  • 42
    • 0037418978 scopus 로고    scopus 로고
    • H.-R. Tseng, S. A. Vignon, J. F. Stoddart, Angew. Chem. 2003, 115, 1529-1533; Angew. Chem. Int. Ed. 2003, 42, 1491-1495.
    • (2003) Angew. Chem. Int. Ed. , vol.42 , pp. 1491-1495
  • 44
    • 84990151906 scopus 로고
    • a) P. R. Ashton, T. T. Goodnow, A. E. Kaifer, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams, Angew. Chem. 1989, 101, 1404-1408; Angew. Chem. Int. Ed. Engl. 1989, 28, 1396-1399;
    • (1989) Angew. Chem. Int. Ed. Engl. , vol.28 , pp. 1396-1399
  • 49
    • 0034677112 scopus 로고    scopus 로고
    • c) D. A. Leigh, A. Troisi, F. Zerbetto, Angew. Chem. 2000, 112, 358-361; Angew. Chem. Int. Ed. 2000, 39, 350-353;
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 350-353
  • 57
    • 2942552994 scopus 로고    scopus 로고
    • note
    • 3.
  • 59
    • 0035794906 scopus 로고    scopus 로고
    • J. O. Jeppesen, J. Perkins, J. Becher, J. F. Stoddart, Angew. Chem. 2001, 113, 1256-1261; Angew. Chem. Int. Ed. 2001, 40, 1216-1221.
    • (2001) Angew. Chem. Int. Ed. , vol.40 , pp. 1216-1221
  • 61
    • 2942551322 scopus 로고    scopus 로고
    • a) B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J. Williams, Angew. Chem. 1988, 100, 1605-1608; Angew. Chem. Int. Ed. 1998, 27, 1547-1550;
    • (1998) Angew. Chem. Int. Ed. , vol.27 , pp. 1547-1550
  • 63
    • 2942611358 scopus 로고    scopus 로고
    • b) P. R. Ashton, B. Odell, M. V. Reddington, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, Angew. Chem. 1988, 100, 1608-1611; Angew. Chem. Int. Ed. 1998, 27, 1550-1553;
    • (1998) Angew. Chem. Int. Ed. , vol.27 , pp. 1550-1553
  • 71
    • 2942518444 scopus 로고    scopus 로고
    • note
    • Partial NMR spectra were simulated and compared to the recorded experimental spectra by using SpinWorks 2.1, K. Marat, Department of Chemistry, University of Manitoba (Canada).
  • 72
    • 0035908240 scopus 로고    scopus 로고
    • -1. These results should be compared with those reported previously for a TTF-based [2]pseudorotaxane for which the "shuttling" mechanism is probably bimolecular, see: M. R. Bryce, G. Cooke, W. Devonport, F. M. A. Duclairoir, V. M. Rotello, Tetrahedron Lett. 2001, 42, 4223-4226.
    • (2001) Tetrahedron Lett. , vol.42 , pp. 4223-4226
    • Bryce, M.R.1    Cooke, G.2    Devonport, W.3    Duclairoir, F.M.A.4    Rotello, V.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.