-
1
-
-
0004256338
-
-
Elsevier, Amsterdam
-
a) F. L. Carter, R. E. Siatkowsky, H. Woltjien, Molecular Electronic Devices, Elsevier, Amsterdam, 1988;
-
(1988)
Molecular Electronic Devices
-
-
Carter, F.L.1
Siatkowsky, R.E.2
Woltjien, H.3
-
2
-
-
3743091248
-
-
b) Special Section: Engineering a Small World, Science, 1991, 254, 1300-1342;
-
(1991)
Science
, vol.254
, pp. 1300-1342
-
-
-
4
-
-
0003446968
-
-
Wiley, New York
-
d) K. E. Drexler, Nanosystems, Molecular Machinery, Manufacturing and Computation, Wiley, New York, 1992;
-
(1992)
Nanosystems, Molecular Machinery, Manufacturing and Computation
-
-
Drexler, K.E.1
-
8
-
-
0026433721
-
-
c) G. M. Whitesides, J. P. Mathias, C. T. Seto, Science, 1991, 254, 1312-1319;
-
(1991)
Science
, vol.254
, pp. 1312-1319
-
-
Whitesides, G.M.1
Mathias, J.P.2
Seto, C.T.3
-
9
-
-
11944263650
-
-
d) G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto, D. N. Chin, M. Mammen, D. M. Gordon, Acc. Chem. Res. 1995, 28, 37-44;
-
(1995)
Acc. Chem. Res.
, vol.28
, pp. 37-44
-
-
Whitesides, G.M.1
Simanek, E.E.2
Mathias, J.P.3
Seto, C.T.4
Chin, D.N.5
Mammen, M.6
Gordon, D.M.7
-
11
-
-
0023841011
-
-
a) H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 1988, 27, 113-158;
-
(1988)
Angew. Chem. Int. Ed. Engl.
, vol.27
, pp. 113-158
-
-
Ringsdorf, H.1
Schlarb, B.2
Venzmer, J.3
-
12
-
-
0027715195
-
-
b) W. Muller, H. Ringsdorf, E. Rump, G. Wildburg, X. Zhang, L. Angermaier, W. Knoll, M. Liley, J. Spinke, Science 1993, 262, 1706-1708.
-
(1993)
Science
, vol.262
, pp. 1706-1708
-
-
Muller, W.1
Ringsdorf, H.2
Rump, E.3
Wildburg, G.4
Zhang, X.5
Angermaier, L.6
Knoll, W.7
Liley, M.8
Spinke, J.9
-
13
-
-
85036488855
-
-
note
-
The following group of references (refs. [5-7]) is by no means exhaustive. They have been included to demonstrate that the functioning aspect of supramolecular chemistry is as varied as the components used.
-
-
-
-
16
-
-
0001310231
-
-
c) A. Livoreil, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 9399-9400;
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9399-9400
-
-
Livoreil, A.1
Dietrich-Buchecker, C.O.2
Sauvage, J.-P.3
-
17
-
-
0028151061
-
-
d) M. J. Marsella, P. J. Carrol, T M. Swager, J. Am. Chem. Soc. 1994, 116, 9347-9348;
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9347-9348
-
-
Marsella, M.J.1
Carrol, P.J.2
Swager, T.M.3
-
20
-
-
33748229714
-
-
b) R. Ballardini, V. Balzani, M. T. Gandolfi, L. Prodi, M. Venturi, D. Philp, H. G. Ricketts, J. F. Stoddart, Angew. Chem. Int. Ed. Engl. 1993, 32, 1301-1303;
-
(1993)
Angew. Chem. Int. Ed. Engl.
, vol.32
, pp. 1301-1303
-
-
Ballardini, R.1
Balzani, V.2
Gandolfi, M.T.3
Prodi, L.4
Venturi, M.5
Philp, D.6
Ricketts, H.G.7
Stoddart, J.F.8
-
21
-
-
37049071283
-
-
c) P. R. Ashton, R. Ballardini, V. Balzani, M. T. Gandolfi, D. J.-F. Marquis, L. Pérez-García, L. Prodi, J. F. Stoddart, M. Venturi, J Chem. Soc. Chem. Commun. 1994, 177-180;
-
(1994)
J Chem. Soc. Chem. Commun.
, pp. 177-180
-
-
Ashton, P.R.1
Ballardini, R.2
Balzani, V.3
Gandolfi, M.T.4
Marquis, D.J.-F.5
Pérez-García, L.6
Prodi, L.7
Stoddart, J.F.8
Venturi, M.9
-
22
-
-
0003408831
-
-
(Ed.: M. Welland), Kluwer, Dordrecht
-
d) J. A. Preece, J. F. Stoddart, in The Ultimate Limits of Fabrication and Measurement (Ed.: M. Welland), Kluwer, Dordrecht, 1995, 1-8;
-
(1995)
The Ultimate Limits of Fabrication and Measurement
, pp. 1-8
-
-
Preece, J.A.1
Stoddart, J.F.2
-
23
-
-
0001690326
-
-
e) A. C. Benniston, A. Harriman, V. M. Lynch, J. Am. Chem. Soc. 1995, 117, 5275-5291;
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 5275-5291
-
-
Benniston, A.C.1
Harriman, A.2
Lynch, V.M.3
-
24
-
-
11944264464
-
-
f) P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, S. Menzer, L. Pérez-García, L. Prodi, J. F. Stoddart, M. Venturi, A. J. P. White, D. J. Williams, ibid. 1995, 117, 11171-11197;
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 11171-11197
-
-
Ashton, P.R.1
Ballardini, R.2
Balzani, V.3
Credi, A.4
Gandolfi, M.T.5
Menzer, S.6
Pérez-García, L.7
Prodi, L.8
Stoddart, J.F.9
Venturi, M.10
White, A.J.P.11
Williams, D.J.12
-
25
-
-
0029821891
-
-
g) R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, S. J. Langford, S. Menzer, L. Prodi, J. F. Stoddart, M. Venturi, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1995, 35, 978-981;
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.35
, pp. 978-981
-
-
Ballardini, R.1
Balzani, V.2
Credi, A.3
Gandolfi, M.T.4
Langford, S.J.5
Menzer, S.6
Prodi, L.7
Stoddart, J.F.8
Venturi, M.9
Williams, D.J.10
-
26
-
-
0030935206
-
-
h) A. Credi, V. Balzani, S. J. Langford, J. F. Stoddart, J. Am. Chem. Soc. 1997, 119, 2679-2681.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 2679-2681
-
-
Credi, A.1
Balzani, V.2
Langford, S.J.3
Stoddart, J.F.4
-
27
-
-
0002976116
-
-
a) B. L. Feringa, W. F. Jager, B. de Lange, J. Am. Chem. Soc. 1991, 113, 5468-5470;
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 5468-5470
-
-
Feringa, B.L.1
Jager, W.F.2
De Lange, B.3
-
28
-
-
11944261083
-
-
b) R. A. Bissell, A. P. de Silva, H. Q. M. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, K. R. A. Sandanayake, Chem. Rev. Soc. 1992, 21, 187-195;
-
(1992)
Chem. Rev. Soc.
, vol.21
, pp. 187-195
-
-
Bissell, R.A.1
De Silva, A.P.2
Gunaratne, H.Q.M.3
Lynch, P.L.M.4
Maguire, G.E.M.5
Sandanayake, K.R.A.6
-
29
-
-
0027304533
-
-
c) B. L. Feringa, W. F. Jager, B. de Lange, Tetrahedron, 1993, 49, 8267-8310;
-
(1993)
Tetrahedron
, vol.49
, pp. 8267-8310
-
-
Feringa, B.L.1
Jager, W.F.2
De Lange, B.3
-
30
-
-
0040930068
-
-
d) M. Jorgensen, K. Lerstrup, P. Frederikson, T. Bjornholm, P. Sommer-Larsen, K. Schaumberg, K. Brunfeldt, J. Bechgaard, J. Org. Chem. 1993, 58, 2785-2790;
-
(1993)
J. Org. Chem.
, vol.58
, pp. 2785-2790
-
-
Jorgensen, M.1
Lerstrup, K.2
Frederikson, P.3
Bjornholm, T.4
Sommer-Larsen, P.5
Schaumberg, K.6
Brunfeldt, K.7
Bechgaard, J.8
-
31
-
-
0003676528
-
-
e) T. R. Kelly, M. C. Bowyer, K. V. Bhaskar, D. Bebbington, A. Garcia, F. Lang, M. H. Kim. M. P. Jette. J. Am. Chem. Soc. 1994, 116, 3657-3658;
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3657-3658
-
-
Kelly, T.R.1
Bowyer, M.C.2
Bhaskar, K.V.3
Bebbington, D.4
Garcia, A.5
Lang, F.6
Kim, M.H.7
Jette, M.P.8
-
33
-
-
0028765749
-
-
g) P. J. Clapp, B. Armitage, P. Roosa, D. F. Obrien, ibid. 1994, 116, 9166-9173;
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9166-9173
-
-
Clapp, P.J.1
Armitage, B.2
Roosa, P.3
Obrien, D.F.4
-
35
-
-
0000428007
-
-
i) S. Hanessian, M. Simond, S. Roelens, J. Am. Chem. Soc. 1995, 117, 7630-7645;
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 7630-7645
-
-
Hanessian, S.1
Simond, M.2
Roelens, S.3
-
36
-
-
0000115578
-
-
j) T. D. James, K. R. A. S. Sandanayake, R. Iguchi, S. Shinkai, ibid. 1995, 117, 8982-8987;
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 8982-8987
-
-
James, T.D.1
Sandanayake, K.R.A.S.2
Iguchi, R.3
Shinkai, S.4
-
38
-
-
0343643254
-
-
19 Feb
-
a) D. B. Amabilino, J. F. Stoddart, New Scientist 1994, 141, No. 1913, 19 Feb, 25-29;
-
(1994)
New Scientist
, vol.141
, Issue.1913
, pp. 25-29
-
-
Amabilino, D.B.1
Stoddart, J.F.2
-
39
-
-
0029946197
-
-
b) D. B. Amabilino, C. O. Dietrich-Bucheker, A. Livoreil, L. Pérez-García, J.-P. Sauvage, J. F. Stoddart, J. Am. Chem. Soc. 1996, 118, 3905-3913.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 3905-3913
-
-
Amabilino, D.B.1
Dietrich-Bucheker, C.O.2
Livoreil, A.3
Pérez-García, L.4
Sauvage, J.-P.5
Stoddart, J.F.6
-
40
-
-
0001102950
-
-
a) C. O. Dietrich-Buchecker, J.-P. Sauvage, J. P. Kitzinger, Tetrahedron Lett. 1983, 24, 5095-5098;
-
(1983)
Tetrahedron Lett.
, vol.24
, pp. 5095-5098
-
-
Dietrich-Buchecker, C.O.1
Sauvage, J.-P.2
Kitzinger, J.P.3
-
42
-
-
0003837875
-
-
Kluwer, Amsterdam
-
c) C. O. Dietrich-Buchecker, J.-P. Sauvage, in Supramolecular Chemistry, Kluwer, Amsterdam, 1992, pp. 259-277;
-
(1992)
Supramolecular Chemistry
, pp. 259-277
-
-
Dietrich-Buchecker, C.O.1
Sauvage, J.-P.2
-
44
-
-
84990151906
-
-
a) P. R. Ashton, T. T. Goodnow, A. E. Kaifer, M. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1989, 28, 1396-1399;
-
(1989)
Angew. Chem. Int. Ed. Engl.
, vol.28
, pp. 1396-1399
-
-
Ashton, P.R.1
Goodnow, T.T.2
Kaifer, A.E.3
Reddington, M.4
Slawin, A.M.Z.5
Spencer, N.6
Stoddart, J.F.7
Vicent, C.8
Williams, D.J.9
-
46
-
-
1242280982
-
-
P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams, J. Am. Chem. Soc. 1992, 114, 193-218.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 193-218
-
-
Anelli, P.L.1
Ashton, P.R.2
Ballardini, R.3
Balzani, V.4
Delgado, M.5
Gandolfi, M.T.6
Goodnow, T.T.7
Kaifer, A.E.8
Philp, D.9
Pietraszkiewicz, M.10
Prodi, L.11
Reddington, M.V.12
Slawin, A.M.Z.13
Spencer, N.14
Stoddart, J.F.15
Vicent, C.16
Williams, D.J.17
-
47
-
-
0012176908
-
-
P. R. Ashton, D. Philp, N. Spencer, J. F. Stoddart, J. Chem. Soc. Chem. Commun. 1992, 1125-1128.
-
(1992)
J. Chem. Soc. Chem. Commun.
, pp. 1125-1128
-
-
Ashton, P.R.1
Philp, D.2
Spencer, N.3
Stoddart, J.F.4
-
48
-
-
0000882065
-
-
a) D. B. Amabilino, J. F. Stoddart, Pure Appl. Chem. 1993, 65, 2351-2359; P. R. Ashton, M. Belohradsky. D. Philp, J. F. Stoddart, J. Chem. Soc. Chem. Commun. 1993, 1269-1274;
-
(1993)
Pure Appl. Chem.
, vol.65
, pp. 2351-2359
-
-
Amabilino, D.B.1
Stoddart, J.F.2
-
49
-
-
34547947364
-
-
a) D. B. Amabilino, J. F. Stoddart, Pure Appl. Chem. 1993, 65, 2351-2359; P. R. Ashton, M. Belohradsky. D. Philp, J. F. Stoddart, J. Chem. Soc. Chem. Commun. 1993, 1269-1274;
-
(1993)
J. Chem. Soc. Chem. Commun.
, pp. 1269-1274
-
-
Ashton, P.R.1
Belohradsky, M.2
Philp, D.3
Stoddart, J.F.4
-
50
-
-
37049074703
-
-
b) P. R. Ashton, M. Belohradsky, D. Philp, J. F. Stoddart, ibid. 1993, 1274-1277;
-
(1993)
J. Chem. Soc. Chem. Commun.
, pp. 1274-1277
-
-
Ashton, P.R.1
Belohradsky, M.2
Philp, D.3
Stoddart, J.F.4
-
51
-
-
0030152506
-
-
c) P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi, D. J. Williams, J. Am. Chem. Soc. 1996, 118, 4931-4951;
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 4931-4951
-
-
Ashton, P.R.1
Ballardini, R.2
Balzani, V.3
Belohradsky, M.4
Gandolfi, M.T.5
Philp, D.6
Prodi, L.7
Raymo, F.M.8
Reddington, M.V.9
Spencer, N.10
Stoddart, J.F.11
Venturi, M.12
Williams, D.J.13
-
52
-
-
0031041828
-
-
d) M. Asakawa, P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, O. Kocian, L. Prodi, F. M. Raymo, J. F. Stoddart, M. Venturi, ibid. 1997, 119, 302-310.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 302-310
-
-
Asakawa, M.1
Ashton, P.R.2
Ballardini, R.3
Balzani, V.4
Belohradsky, M.5
Gandolfi, M.T.6
Kocian, O.7
Prodi, L.8
Raymo, F.M.9
Stoddart, J.F.10
Venturi, M.11
-
53
-
-
0004124947
-
-
Academic Press, New York
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1971)
Catenanes, Rotaxanes, and Knots
-
-
Schill, G.1
-
54
-
-
25344477887
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1995)
Liebegs Ann. Chem.
, pp. 739-745
-
-
Vögtle, F.1
Händel, M.2
Meier, S.3
Ottens-Hildebrandt, S.4
Ott, F.5
Schmidt, T.6
-
55
-
-
0001004782
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Chem. Eur. J.
, vol.2
, pp. 640-643
-
-
Vögtle, F.1
Dünnwald, T.2
Händel, M.3
Jäger, R.4
Meier, S.5
Harder, G.6
-
56
-
-
0029970498
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Synthesis
, pp. 353-356
-
-
Vögtle, F.1
Jäger, R.2
Händel, M.3
Ottens-Hildebrandt, S.4
Schmidt, W.5
-
57
-
-
33748960056
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Liebigs Ann. Chem.
, pp. 921-926
-
-
Vögtle, F.1
Ahuis, F.2
Baumann, S.3
Sessler, J.4
-
58
-
-
33749147402
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Liebigs Ann. Chem.
, pp. 1201-1207
-
-
Jäger, R.1
Händel, M.2
Harren, J.3
Rissanen, K.4
Vögtle, F.5
-
59
-
-
0040530095
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Pure Appl. Chem.
, vol.68
, pp. 225-232
-
-
Vögtle, F.1
Jäger, R.2
Händel, M.3
Ottens-Hildebrandt, S.4
-
60
-
-
37049069659
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1995)
J. Chem. Soc. Chem. Commun.
, pp. 1289-1291
-
-
Kolchinski, A.G.1
Busch, D.H.2
Alcock, N.W.3
-
61
-
-
0001603015
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Chem. Eur. J.
, vol.2
, pp. 729-736
-
-
Ashton, P.R.1
Glink, P.T.2
Stoddart, J.F.3
Tasker, P.R.4
White, A.J.P.5
Williams, D.J.6
-
62
-
-
0030593607
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 6217-6220
-
-
Ashton, P.R.1
Glink, P.T.2
Stoddart, J.F.3
Menzer, S.4
Tasker, P.R.5
White, A.J.P.6
Williams, D.J.7
-
63
-
-
0000827460
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1992)
Nature (London)
, vol.356
, pp. 325-327
-
-
Harada, A.1
Li, J.2
Kamachi, M.3
-
64
-
-
0028470874
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1994)
Nature (London)
, vol.370
, pp. 126-128
-
-
-
65
-
-
0000999497
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3192-3196
-
-
-
66
-
-
33748243087
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1992)
Angew. Chem. Int. Ed. Engl.
, vol.31
, pp. 197-199
-
-
Wenz, G.1
Keller, B.2
-
67
-
-
33749139352
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 309-311
-
-
Born, M.1
Ritter, H.2
-
68
-
-
0001654880
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 852-874
-
-
Gibson, H.W.1
Wu, S.2
Lecavalier, P.R.3
Wu, C.4
Shen, Y.X.5
-
69
-
-
0029932787
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 1811-1812
-
-
Yamaguchi, I.1
Osakada, K.2
Yamamoto, T.3
-
70
-
-
0030193511
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Adv. Mater.
, vol.8
, pp. 580-582
-
-
Kern, J.-M.1
Sauvage, J.-P.2
Bidan, G.3
Billon, M.4
Divisia-Blohorn, B.5
-
71
-
-
0000350647
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1991)
Chem. Mater.
, vol.3
, pp. 569-572
-
-
Wu, C.1
Lecavalier, P.R.2
Shen, Y.X.3
Gibson, H.W.4
-
72
-
-
37049088600
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler,
-
(1992)
J. Chem. Soc. Chem. Commun.
, pp. 1131-1133
-
-
Chambron, J.-C.1
Heitz, V.2
Sauvage, J.-P.3
-
73
-
-
0027872342
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 12378-12384
-
-
-
74
-
-
0000511796
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 6109-6114
-
-
Chambron, J.-C.1
Harriman, A.2
Heitz, V.3
Sauvage, J.-P.4
-
75
-
-
37049079557
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1995)
J. Chem. Soc. Chem. Commun.
, pp. 781-782
-
-
Diederich, F.1
Dietrich-Buchecker, C.O.2
Nierengarten, J.-F.3
Sauvage, J.-P.4
-
76
-
-
33748725372
-
-
The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
-
(1996)
Angew. Chem. Int. Ed. Engl.
, vol.35
, pp. 906-909
-
-
Solladié, N.1
Chambron, J.-C.2
Dietrich-Buchecker, C.O.3
Sauvage, J.-P.4
-
77
-
-
84921649288
-
-
P. L. Anelli, N. Spencer, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 5131-5133.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 5131-5133
-
-
Anelli, P.L.1
Spencer, N.2
Stoddart, J.F.3
-
78
-
-
84987245109
-
-
P. R. Ashton, R. A. Bisseil, N. Spencer, J. F. Stoddart, M. S. Tolley, Synlett 1992, 914-918.
-
(1992)
Synlett
, pp. 914-918
-
-
Ashton, P.R.1
Bisseil, R.A.2
Spencer, N.3
Stoddart, J.F.4
Tolley, M.S.5
-
79
-
-
84987189495
-
-
P. R. Ashton, R. A. Bissell, R. Górski, D. Philp, N. Spencer, J. F. Stoddart, M. S. Tolley, Synlett 1992, 919-922.
-
(1992)
Synlett
, pp. 919-922
-
-
Ashton, P.R.1
Bissell, R.A.2
Górski, R.3
Philp, D.4
Spencer, N.5
Stoddart, J.F.6
Tolley, M.S.7
-
80
-
-
84987240897
-
-
P. R. Ashton, R. A. Bissell, N. Spencer, J. F. Stoddart, M. S. Tolley, Synlett 1992, 923-926.
-
(1992)
Synlett
, pp. 923-926
-
-
Ashton, P.R.1
Bissell, R.A.2
Spencer, N.3
Stoddart, J.F.4
Tolley, M.S.5
-
81
-
-
0343686780
-
-
(Eds.: P. E. Blöchl, A. J. Fisher, C. Joachim), Kluwer, Dordrecht
-
R. A. Bissell, J. F. Stoddart, in Computations for the Nano-Scale, NATO ASI Series Vol. 240 (Eds.: P. E. Blöchl, A. J. Fisher, C. Joachim), Kluwer, Dordrecht, 1993, pp. 141-152.
-
(1993)
Computations for the Nano-Scale, NATO ASI Series Vol. 240
, vol.240
, pp. 141-152
-
-
Bissell, R.A.1
Stoddart, J.F.2
-
82
-
-
84989504610
-
-
a) B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1988, 27, 1547-1550;
-
(1988)
Angew. Chem. Int. Ed. Engl.
, vol.27
, pp. 1547-1550
-
-
Odell, B.1
Reddington, M.V.2
Slawin, A.M.Z.3
Spencer, N.4
Stoddart, J.F.5
Williams, D.J.6
-
83
-
-
84990163191
-
-
b) P. R. Ashton, B. Odell, M. V. Reddington, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, ibid. 1988, 27, 1550-1553;
-
(1988)
Angew. Chem. Int. Ed. Engl.
, vol.27
, pp. 1550-1553
-
-
Ashton, P.R.1
Odell, B.2
Reddington, M.V.3
Slawin, A.M.Z.4
Stoddart, J.F.5
Williams, D.J.6
-
84
-
-
0001573077
-
-
and references cited therein
-
c) M. Asakawa, W. Dehaen, G. L'abbé, S. Menzer, J. Nouwen, F. M. Raymo, J. F. Stoddart, D. J. Williams, J. Org. Chem. 1996, 61, 9591-9595 and references cited therein.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 9591-9595
-
-
Asakawa, M.1
Dehaen, W.2
L'abbé, G.3
Menzer, S.4
Nouwen, J.5
Raymo, F.M.6
Stoddart, J.F.7
Williams, D.J.8
-
85
-
-
85036484117
-
-
note
-
4.
-
-
-
-
86
-
-
85005745628
-
-
C. L. Brown, D. Philp, J. F. Stoddart, Synlett 1991, 462-464. The term threading relates to the inclusion of a linear molecule inside an already formed macrocyclic component. Clipping relates to the self-assembly process in which the macrocycle is formed around the linear component - in essence, a template-directed synthesis.
-
(1991)
Synlett
, pp. 462-464
-
-
Brown, C.L.1
Philp, D.2
Stoddart, J.F.3
-
87
-
-
37049071373
-
-
a) D. B. Amabilino, P. R. Ashton, G. R. Brown, W. Hayes, J. F. Stoddart, M. S. Tolley, D. J. Williams, J. Chem. Soc. Chem. Commun. 1994, 2475-2478;
-
(1994)
J. Chem. Soc. Chem. Commun.
, pp. 2475-2478
-
-
Amabilino, D.B.1
Ashton, P.R.2
Brown, G.R.3
Hayes, W.4
Stoddart, J.F.5
Tolley, M.S.6
Williams, D.J.7
-
88
-
-
33748245620
-
-
b) P. R. Ashton, L. Pérez-García, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1995, 34, 571-574.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 571-574
-
-
Ashton, P.R.1
Pérez-García, L.2
Stoddart, J.F.3
White, A.J.P.4
Williams, D.J.5
-
89
-
-
1242348325
-
-
D. B. Amabilino, P. R. Ashton, C. L. Brown, E. Córdova, L. A. Godinez, T. T. Goodnow, A. E. Kaifer, S. P. Newton, M. Pietraszkiewicz, D. Philp, F. M. Raymo, A. S. Reder, M. T. Rutland, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J. Williams, J. Am. Chem. Soc. 1995, 117, 1271-1293.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 1271-1293
-
-
Amabilino, D.B.1
Ashton, P.R.2
Brown, C.L.3
Córdova, E.4
Godinez, L.A.5
Goodnow, T.T.6
Kaifer, A.E.7
Newton, S.P.8
Pietraszkiewicz, M.9
Philp, D.10
Raymo, F.M.11
Reder, A.S.12
Rutland, M.T.13
Slawin, A.M.Z.14
Spencer, N.15
Stoddart, J.F.16
Williams, D.J.17
-
90
-
-
85036486363
-
-
note
-
- salts.
-
-
-
-
91
-
-
85036483018
-
-
note
-
Positive-ion FABMS revealed two characteristic peaks at m/z 1910 and 1765, corresponding to the loss of one and two hexafluorophosphate counterions, respectively, from 1·4PF6.
-
-
-
-
92
-
-
85036491689
-
-
note
-
1H NMR spectrum where the resonances of the protons on the two hydroquinone rings might be expected to occur.
-
-
-
-
93
-
-
33748225068
-
-
E. S. Pysh, N. C. Yang, J. Am. Chem. Soc. 1963, 85, 2124-2130. Replacement of two methyl groups in p-xylene with O-methylene groups would be expected to raise the oxidation potential of this aromatic residue.
-
(1963)
J. Am. Chem. Soc.
, vol.85
, pp. 2124-2130
-
-
Pysh, E.S.1
Yang, N.C.2
-
94
-
-
85036486328
-
-
note
-
The diol 18 may be prepared in 60% yield from the reaction of the monosodium salt of triethyleneglycol with 1,4-bis(bromomethyl)benzene.
-
-
-
-
95
-
-
85036491787
-
-
note
-
1H NMR probes (Table 1). This observation may reflect the operation of two different exchange processes with very similar activation energy barriers.
-
-
-
-
96
-
-
85036486586
-
-
note
-
6 at low temperature. Hence, these protons are not differentiated into primed and unprimed signals.
-
-
-
-
97
-
-
85036492923
-
-
note
-
6 have similar activation energy barriers. Also, it should be noted that the differences in the separations between exchanging α-bipyridinium proton signals is small (<40 Hz).
-
-
-
-
98
-
-
0025939847
-
-
P. R. Ashton, M. Grognuz, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, Tetrahedron Lett. 1991, 32, 6235-6238.
-
(1991)
Tetrahedron Lett.
, vol.32
, pp. 6235-6238
-
-
Ashton, P.R.1
Grognuz, M.2
Slawin, A.M.Z.3
Stoddart, J.F.4
Williams, D.J.5
-
99
-
-
85036492695
-
-
note
-
1H NMR spectroscopic studies indicate that the indole nucleus has its long "axis" directed perpendicular to the directions of the N-N vectors in the tetracationic macrocycle.
-
-
-
-
100
-
-
0000327574
-
-
T. T. Goodnow, A. E. Kaifer, M. V Reddington, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 4335-4337. See also: A. Mirzoian, A. E. Kaifer, J. Org. Chem. 1995, 60, 8093-8095.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 4335-4337
-
-
Goodnow, T.T.1
Kaifer, A.E.2
Reddington, M.V.3
Stoddart, J.F.4
-
101
-
-
0001304415
-
-
T. T. Goodnow, A. E. Kaifer, M. V Reddington, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 4335-4337. See also: A. Mirzoian, A. E. Kaifer, J. Org. Chem. 1995, 60, 8093-8095.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 8093-8095
-
-
Mirzoian, A.1
Kaifer, A.E.2
-
102
-
-
33947482239
-
-
a) B. Robinson, Chem. Rev. 1963, 63, 373-401 and 1969, 69, 227-250;
-
(1963)
Chem. Rev.
, vol.63
, pp. 373-401
-
-
Robinson, B.1
-
103
-
-
33947298530
-
-
a) B. Robinson, Chem. Rev. 1963, 63, 373-401 and 1969, 69, 227-250;
-
(1969)
Chem. Rev.
, vol.69
, pp. 227-250
-
-
-
106
-
-
0025732871
-
-
d) D. Zhao, D. L. Hughes, D. R. Bender, A. M. DeMarco, P. J. Reider, J. Org. Chem. 1991, 56, 3001-3006.
-
(1991)
J. Org. Chem.
, vol.56
, pp. 3001-3006
-
-
Zhao, D.1
Hughes, D.L.2
Bender, D.R.3
DeMarco, A.M.4
Reider, P.J.5
-
107
-
-
85036483606
-
-
note
-
A similar process has also been observed in the other molecular shuttles discussed in this paper.
-
-
-
-
108
-
-
0001438557
-
-
The first and second oxidation potentials of TTF are approximately 0.3 and 0.7 V, respectively, vs SCE (F. Wudl, M. L. Kaplan, E. J. Hufnagel, E. W. Southwick, J. Org. Chem. 1974, 39, 3608-3609).
-
(1974)
J. Org. Chem.
, vol.39
, pp. 3608-3609
-
-
Wudl, F.1
Kaplan, M.L.2
Hufnagel, E.J.3
Southwick, E.W.4
-
110
-
-
1842371934
-
-
Biosoft, Cambridge
-
4 and TTF.
-
(1992)
UltraFit
-
-
-
112
-
-
0029117927
-
-
and references cited therein
-
M. Nishio, Y. Umezawa, M. Hirota, Y. Takeuchi, Tetrahedron 1995, 51, 8665-8701 and references cited therein.
-
(1995)
Tetrahedron
, vol.51
, pp. 8665-8701
-
-
Nishio, M.1
Umezawa, Y.2
Hirota, M.3
Takeuchi, Y.4
-
113
-
-
0009529263
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1978)
J. Chem. Soc. Chem. Commun.
, pp. 18-19
-
-
Mizuno, M.1
Garito, A.F.2
Cava, M.P.3
-
114
-
-
0025943292
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1991)
Tetrahedron Lett.
, vol.32
, pp. 6033-6036
-
-
Bryce, M.R.1
Marshallsay, G.J.2
-
115
-
-
37049069311
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1989)
J. Chem. Soc. Chem. Commun.
, pp. 1406-1409
-
-
Girmay, B.1
Kilburn, J.D.2
Underhill, A.E.3
Varma, K.S.4
Hursthouse, M.B.5
Harman, M.E.6
Becher, J.7
Bojesen, G.J.8
-
116
-
-
37049074691
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1990)
J. Chem. Soc. Perkin Trans. 1
, pp. 175-177
-
-
Becher, J.1
Hansen, T.K.2
Malhotra, N.3
Bojesen, G.4
Bowadt, S.5
Varma, K.S.6
Girmay, B.7
Kilburn, J.D.8
Underhill, A.E.9
-
117
-
-
37049071585
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1992)
J. Chem. Soc. Perkin Trans. 1
, pp. 383-385
-
-
Girmay, B.1
Underhill, A.E.2
Kilburn, J.D.3
Hansen, T.K.4
Becher, J.5
Varma, K.S.6
Roepstorff, P.7
-
118
-
-
37049069311
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1986)
Tetrahedron
, vol.42
, pp. 1209-1252
-
-
Krief, A.1
-
119
-
-
37049069311
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1987)
Sulfur Reports
, vol.7
, pp. 155-240
-
-
Schukat, G.1
Richter, A.M.2
Fanghänel, E.3
-
120
-
-
33750542705
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 2524-2528
-
-
Li, Z.-T.1
Stein, P.C.2
Svenstrup, N.3
Lund, K.H.4
Becher, J.5
-
121
-
-
0000647283
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1996)
Chem. Eur. J.
, vol.2
, pp. 624-633
-
-
Li, Z.-T.1
Stein, P.C.2
Becher, J.3
Jensen, D.4
Merk, P.5
Svenstrup, N.6
-
122
-
-
0000600691
-
-
The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
-
(1996)
Chem. Commun.
, pp. 639-640
-
-
Li, Z.-T.1
Becher, J.2
-
124
-
-
0002129645
-
-
E.
-
a) G. Steimecke, H. J. Sieler, R. Kirmse, E. Hoyer, E. Phosphorus Sulfur 1979, 7, 49-55;
-
(1979)
Phosphorus Sulfur
, vol.7
, pp. 49-55
-
-
Steimecke, G.1
Sieler, H.J.2
Kirmse, R.3
Hoyer, E.4
-
125
-
-
84994939795
-
-
b) K. S. Varma, A. Bury, N. J. Harris, A. E. Underhill, Synthesis 1987, 837-838.
-
(1987)
Synthesis
, pp. 837-838
-
-
Varma, K.S.1
Bury, A.2
Harris, N.J.3
Underhill, A.E.4
-
126
-
-
85036482310
-
-
note
-
6. Evident in the FABMS were peaks at m/z 2836, 2690, and 2545, corresponding to the loss of one, two, and three counterions, repectively, from the molecular assembly.
-
-
-
-
128
-
-
0039726458
-
-
a) M. J. Kamlet, J. L. Abboud, R. W. Taft, J. Am. Chem. Soc. 1977, 99, 6027-6038;
-
(1977)
J. Am. Chem. Soc.
, vol.99
, pp. 6027-6038
-
-
Kamlet, M.J.1
Abboud, J.L.2
Taft, R.W.3
-
129
-
-
33847089726
-
-
b) M. J. Kamlet, J. L. Abboud, R. W. Taft, ibid. 1977, 99, 8325-8327;
-
(1977)
J. Am. Chem. Soc.
, vol.99
, pp. 8325-8327
-
-
Kamlet, M.J.1
Abboud, J.L.2
Taft, R.W.3
-
130
-
-
0000066585
-
-
c) J. L. Abboud, M. J. Kamlet, R. W. Taft, Progr. Phys. Org. Chem. 1981, 13, 485-523.
-
(1981)
Progr. Phys. Org. Chem.
, vol.13
, pp. 485-523
-
-
Abboud, J.L.1
Kamlet, M.J.2
Taft, R.W.3
-
131
-
-
0028276063
-
-
R. A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart, Nature (London), 1994, 369, 133-137.
-
(1994)
Nature (London)
, vol.369
, pp. 133-137
-
-
Bissell, R.A.1
Córdova, E.2
Kaifer, A.E.3
Stoddart, J.F.4
-
135
-
-
33751156895
-
-
E. Córdova, R. A. Bissell, A. E. Kaifer, J. Org. Chem. 1995, 60, 1033-1038.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 1033-1038
-
-
Córdova, E.1
Bissell, R.A.2
Kaifer, A.E.3
-
136
-
-
0000729706
-
-
J. C. Medina, T. T. Goodnow, M. T. Rojas, J. L. Atwood, B. C. Lynn, A. E. Kaifer, G. W. Gokel, J. Am. Chem. Soc. 1992, 114, 10583-10595.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 10583-10595
-
-
Medina, J.C.1
Goodnow, T.T.2
Rojas, M.T.3
Atwood, J.L.4
Lynn, B.C.5
Kaifer, A.E.6
Gokel, G.W.7
-
137
-
-
0004055425
-
-
Pergamon, New York
-
D. D. Perrin, W. L. Armarego, Purification of Laboratory Chemicals, 3rd ed., Pergamon, New York, 1988.
-
(1988)
Purification of Laboratory Chemicals, 3rd Ed.
-
-
Perrin, D.D.1
Armarego, W.L.2
-
139
-
-
0026397459
-
-
H. S. Freeman, S.-D. Kim, R. D. Gilbert, R. McGregor, Dyes Pigm. 1991, 17, 83-100.
-
(1991)
Dyes Pigm.
, vol.17
, pp. 83-100
-
-
Freeman, H.S.1
Kim, S.-D.2
Gilbert, R.D.3
McGregor, R.4
|