메뉴 건너뛰기




Volumn 3, Issue 7, 1997, Pages 1113-1135

Toward controllable molecular shuttles

Author keywords

Molecular devices; Nanostructures; Rotaxanes; Self assembly; Translational isomerism

Indexed keywords


EID: 0030838011     PISSN: 09476539     EISSN: None     Source Type: Journal    
DOI: 10.1002/chem.19970030719     Document Type: Article
Times cited : (157)

References (139)
  • 2
    • 3743091248 scopus 로고
    • b) Special Section: Engineering a Small World, Science, 1991, 254, 1300-1342;
    • (1991) Science , vol.254 , pp. 1300-1342
  • 13
    • 85036488855 scopus 로고    scopus 로고
    • note
    • The following group of references (refs. [5-7]) is by no means exhaustive. They have been included to demonstrate that the functioning aspect of supramolecular chemistry is as varied as the components used.
  • 48
    • 0000882065 scopus 로고
    • a) D. B. Amabilino, J. F. Stoddart, Pure Appl. Chem. 1993, 65, 2351-2359; P. R. Ashton, M. Belohradsky. D. Philp, J. F. Stoddart, J. Chem. Soc. Chem. Commun. 1993, 1269-1274;
    • (1993) Pure Appl. Chem. , vol.65 , pp. 2351-2359
    • Amabilino, D.B.1    Stoddart, J.F.2
  • 53
    • 0004124947 scopus 로고
    • Academic Press, New York
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1971) Catenanes, Rotaxanes, and Knots
    • Schill, G.1
  • 54
    • 25344477887 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1995) Liebegs Ann. Chem. , pp. 739-745
    • Vögtle, F.1    Händel, M.2    Meier, S.3    Ottens-Hildebrandt, S.4    Ott, F.5    Schmidt, T.6
  • 55
    • 0001004782 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Chem. Eur. J. , vol.2 , pp. 640-643
    • Vögtle, F.1    Dünnwald, T.2    Händel, M.3    Jäger, R.4    Meier, S.5    Harder, G.6
  • 56
    • 0029970498 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Synthesis , pp. 353-356
    • Vögtle, F.1    Jäger, R.2    Händel, M.3    Ottens-Hildebrandt, S.4    Schmidt, W.5
  • 57
    • 33748960056 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Liebigs Ann. Chem. , pp. 921-926
    • Vögtle, F.1    Ahuis, F.2    Baumann, S.3    Sessler, J.4
  • 58
    • 33749147402 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Liebigs Ann. Chem. , pp. 1201-1207
    • Jäger, R.1    Händel, M.2    Harren, J.3    Rissanen, K.4    Vögtle, F.5
  • 59
    • 0040530095 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Pure Appl. Chem. , vol.68 , pp. 225-232
    • Vögtle, F.1    Jäger, R.2    Händel, M.3    Ottens-Hildebrandt, S.4
  • 60
    • 37049069659 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1995) J. Chem. Soc. Chem. Commun. , pp. 1289-1291
    • Kolchinski, A.G.1    Busch, D.H.2    Alcock, N.W.3
  • 61
    • 0001603015 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Chem. Eur. J. , vol.2 , pp. 729-736
    • Ashton, P.R.1    Glink, P.T.2    Stoddart, J.F.3    Tasker, P.R.4    White, A.J.P.5    Williams, D.J.6
  • 62
    • 0030593607 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Tetrahedron Lett. , vol.37 , pp. 6217-6220
    • Ashton, P.R.1    Glink, P.T.2    Stoddart, J.F.3    Menzer, S.4    Tasker, P.R.5    White, A.J.P.6    Williams, D.J.7
  • 63
    • 0000827460 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1992) Nature (London) , vol.356 , pp. 325-327
    • Harada, A.1    Li, J.2    Kamachi, M.3
  • 64
    • 0028470874 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1994) Nature (London) , vol.370 , pp. 126-128
  • 65
    • 0000999497 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 3192-3196
  • 66
    • 33748243087 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1992) Angew. Chem. Int. Ed. Engl. , vol.31 , pp. 197-199
    • Wenz, G.1    Keller, B.2
  • 67
    • 33749139352 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1995) Angew. Chem. Int. Ed. Engl. , vol.34 , pp. 309-311
    • Born, M.1    Ritter, H.2
  • 68
    • 0001654880 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 852-874
    • Gibson, H.W.1    Wu, S.2    Lecavalier, P.R.3    Wu, C.4    Shen, Y.X.5
  • 69
    • 0029932787 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 1811-1812
    • Yamaguchi, I.1    Osakada, K.2    Yamamoto, T.3
  • 70
    • 0030193511 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Adv. Mater. , vol.8 , pp. 580-582
    • Kern, J.-M.1    Sauvage, J.-P.2    Bidan, G.3    Billon, M.4    Divisia-Blohorn, B.5
  • 71
    • 0000350647 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1991) Chem. Mater. , vol.3 , pp. 569-572
    • Wu, C.1    Lecavalier, P.R.2    Shen, Y.X.3    Gibson, H.W.4
  • 72
    • 37049088600 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler,
    • (1992) J. Chem. Soc. Chem. Commun. , pp. 1131-1133
    • Chambron, J.-C.1    Heitz, V.2    Sauvage, J.-P.3
  • 73
    • 0027872342 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1993) J. Am. Chem. Soc. , vol.115 , pp. 12378-12384
  • 74
    • 0000511796 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1993) J. Am. Chem. Soc. , vol.115 , pp. 6109-6114
    • Chambron, J.-C.1    Harriman, A.2    Heitz, V.3    Sauvage, J.-P.4
  • 75
    • 37049079557 scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1995) J. Chem. Soc. Chem. Commun. , pp. 781-782
    • Diederich, F.1    Dietrich-Buchecker, C.O.2    Nierengarten, J.-F.3    Sauvage, J.-P.4
  • 76
    • 33748725372 scopus 로고    scopus 로고
    • The term rotaxane comes from the Latin axis meaning axle and rota for wheel. For more information, see G. Schill, Catenanes, Rotaxanes, and Knots, Academic Press, New York, 1971. The numbers in the brackets immediately preceding the name rotaxane indicate the number of constituent components present within the complex. Hence, a [2]rotaxane is made up of two components, that is, one dumbbell-shaped compound and one wheel. For rotaxanes based principally on hydrogen bonding for their self-assembly, see: a) F. Vögtle, M. Händel, S. Meier, S. Ottens-Hildebrandt, F. Ott, T. Schmidt, Liebegs Ann. Chem. 1995, 739-745; b) F. Vögtle, T. Dünnwald, M. Händel, R. Jäger, S. Meier, G. Harder, Chem. Eur. J. 1996, 2, 640-643; c) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, W. Schmidt, Synthesis 1996, 353-356; d) F. Vögtle, F. Ahuis, S. Baumann, J. Sessler, Liebigs Ann. Chem. 1996, 921-926; e) R. Jäger, M. Händel, J. Harren, K. Rissanen, F. Vögtle, ibid. 1996, 1201-1207; f) F. Vögtle, R. Jäger, M. Händel, S. Ottens-Hildebrandt, Pure Appl. Chem. 1996, 68, 225-232; g) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289-1291; h) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. R. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 729-736; i) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. R. Tasker, A. J. P. White, D. J. Williams, Tetrahedron Lett. 1996, 37, 6217-6220. For cyclodextrin-based rotaxanes, see; a) A. Harada, J. Li, M. Kamachi, Nature (London) 1992, 356, 325-327; 1994, 370, 126-128; J. Am. Chem. Soc. 1994, 116, 3192-3196; b) G. Wenz, B. Keller, Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199; c) M. Born, H. Ritter, ibid. 1995, 34, 309-311. For polyrotaxanes, see: a) H. W Gibson, S. Wu, P. R. Lecavalier, C. Wu, Y. X. Shen. J. Am. Chem. Soc. 1995, 117, 852-874; b) I. Yamaguchi, K. Osakada, T. Yamamoto, ibid. 1996, 118, 1811-1812; c) J.-M. Kern, J.-P. Sauvage, G. Bidan, M. Billon, B. Divisia-Blohorn, Adv. Mater. 1996, 8, 580-582. For rotaxanes incorporating transition-metal ions. see: a) C. Wu, P.R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569-572; J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131-1133; J. Am. Chem. Soc. 1993, 115, 12378-12384; c) J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, ibid. 1993, 115, 6109-6114 and 7419-7425; d) F. Diederich, C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1995, 781-782; e) N. Solladié, J.-C. Chambron, C. O. Dietrich-Buchecker, J-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1996, 35, 906-909.
    • (1996) Angew. Chem. Int. Ed. Engl. , vol.35 , pp. 906-909
    • Solladié, N.1    Chambron, J.-C.2    Dietrich-Buchecker, C.O.3    Sauvage, J.-P.4
  • 85
    • 85036484117 scopus 로고    scopus 로고
    • note
    • 4.
  • 86
    • 85005745628 scopus 로고
    • C. L. Brown, D. Philp, J. F. Stoddart, Synlett 1991, 462-464. The term threading relates to the inclusion of a linear molecule inside an already formed macrocyclic component. Clipping relates to the self-assembly process in which the macrocycle is formed around the linear component - in essence, a template-directed synthesis.
    • (1991) Synlett , pp. 462-464
    • Brown, C.L.1    Philp, D.2    Stoddart, J.F.3
  • 90
    • 85036486363 scopus 로고    scopus 로고
    • note
    • - salts.
  • 91
    • 85036483018 scopus 로고    scopus 로고
    • note
    • Positive-ion FABMS revealed two characteristic peaks at m/z 1910 and 1765, corresponding to the loss of one and two hexafluorophosphate counterions, respectively, from 1·4PF6.
  • 92
    • 85036491689 scopus 로고    scopus 로고
    • note
    • 1H NMR spectrum where the resonances of the protons on the two hydroquinone rings might be expected to occur.
  • 93
    • 33748225068 scopus 로고
    • E. S. Pysh, N. C. Yang, J. Am. Chem. Soc. 1963, 85, 2124-2130. Replacement of two methyl groups in p-xylene with O-methylene groups would be expected to raise the oxidation potential of this aromatic residue.
    • (1963) J. Am. Chem. Soc. , vol.85 , pp. 2124-2130
    • Pysh, E.S.1    Yang, N.C.2
  • 94
    • 85036486328 scopus 로고    scopus 로고
    • note
    • The diol 18 may be prepared in 60% yield from the reaction of the monosodium salt of triethyleneglycol with 1,4-bis(bromomethyl)benzene.
  • 95
    • 85036491787 scopus 로고    scopus 로고
    • note
    • 1H NMR probes (Table 1). This observation may reflect the operation of two different exchange processes with very similar activation energy barriers.
  • 96
    • 85036486586 scopus 로고    scopus 로고
    • note
    • 6 at low temperature. Hence, these protons are not differentiated into primed and unprimed signals.
  • 97
    • 85036492923 scopus 로고    scopus 로고
    • note
    • 6 have similar activation energy barriers. Also, it should be noted that the differences in the separations between exchanging α-bipyridinium proton signals is small (<40 Hz).
  • 99
    • 85036492695 scopus 로고    scopus 로고
    • note
    • 1H NMR spectroscopic studies indicate that the indole nucleus has its long "axis" directed perpendicular to the directions of the N-N vectors in the tetracationic macrocycle.
  • 101
    • 0001304415 scopus 로고
    • T. T. Goodnow, A. E. Kaifer, M. V Reddington, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 4335-4337. See also: A. Mirzoian, A. E. Kaifer, J. Org. Chem. 1995, 60, 8093-8095.
    • (1995) J. Org. Chem. , vol.60 , pp. 8093-8095
    • Mirzoian, A.1    Kaifer, A.E.2
  • 102
    • 33947482239 scopus 로고
    • a) B. Robinson, Chem. Rev. 1963, 63, 373-401 and 1969, 69, 227-250;
    • (1963) Chem. Rev. , vol.63 , pp. 373-401
    • Robinson, B.1
  • 103
    • 33947298530 scopus 로고
    • a) B. Robinson, Chem. Rev. 1963, 63, 373-401 and 1969, 69, 227-250;
    • (1969) Chem. Rev. , vol.69 , pp. 227-250
  • 107
    • 85036483606 scopus 로고    scopus 로고
    • note
    • A similar process has also been observed in the other molecular shuttles discussed in this paper.
  • 110
    • 1842371934 scopus 로고
    • Biosoft, Cambridge
    • 4 and TTF.
    • (1992) UltraFit
  • 113
    • 0009529263 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1978) J. Chem. Soc. Chem. Commun. , pp. 18-19
    • Mizuno, M.1    Garito, A.F.2    Cava, M.P.3
  • 114
    • 0025943292 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1991) Tetrahedron Lett. , vol.32 , pp. 6033-6036
    • Bryce, M.R.1    Marshallsay, G.J.2
  • 115
    • 37049069311 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1989) J. Chem. Soc. Chem. Commun. , pp. 1406-1409
    • Girmay, B.1    Kilburn, J.D.2    Underhill, A.E.3    Varma, K.S.4    Hursthouse, M.B.5    Harman, M.E.6    Becher, J.7    Bojesen, G.J.8
  • 116
    • 37049074691 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1990) J. Chem. Soc. Perkin Trans. 1 , pp. 175-177
    • Becher, J.1    Hansen, T.K.2    Malhotra, N.3    Bojesen, G.4    Bowadt, S.5    Varma, K.S.6    Girmay, B.7    Kilburn, J.D.8    Underhill, A.E.9
  • 117
    • 37049071585 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1992) J. Chem. Soc. Perkin Trans. 1 , pp. 383-385
    • Girmay, B.1    Underhill, A.E.2    Kilburn, J.D.3    Hansen, T.K.4    Becher, J.5    Varma, K.S.6    Roepstorff, P.7
  • 118
    • 37049069311 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1986) Tetrahedron , vol.42 , pp. 1209-1252
    • Krief, A.1
  • 119
    • 37049069311 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1987) Sulfur Reports , vol.7 , pp. 155-240
    • Schukat, G.1    Richter, A.M.2    Fanghänel, E.3
  • 120
    • 33750542705 scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1995) Angew. Chem. Int. Ed. Engl. , vol.34 , pp. 2524-2528
    • Li, Z.-T.1    Stein, P.C.2    Svenstrup, N.3    Lund, K.H.4    Becher, J.5
  • 121
    • 0000647283 scopus 로고    scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1996) Chem. Eur. J. , vol.2 , pp. 624-633
    • Li, Z.-T.1    Stein, P.C.2    Becher, J.3    Jensen, D.4    Merk, P.5    Svenstrup, N.6
  • 122
    • 0000600691 scopus 로고    scopus 로고
    • The related species, bis(propylenedithio)TTF, has been prepared and studied, especially in the context of organic metals (M. Mizuno, A. F. Garito, M. P. Cava, J. Chem. Soc. Chem. Commun. 1978, 18-19). An asymmetrical TTF derivative containing the 2-hydroxypropylenedithio moiety has also been reported recently (M. R. Bryce, G. J. Marshallsay, Tetrahedron Lett. 1991, 32, 6033-6036). However, in view of the difficulties involved in alkylating the secondary hydroxyl function in derivatives of this type, as well as the limited solubility of lower molecular weight TTF derivatives in many organic solvents, we decided to employ a different synthetic approach whereby the polyether-containing portions of the dumbbell-shaped component 1 are constructed prior to formation of the 4,5-dithio-1,3-dithiol-2-thione moiety. By forming the TTF nucleus in the final step of the synthesis of 1, we also avoided possible complications associated with the instability of the dithio-TTF unit to a wide range of different reaction conditions. The TTF nucleus has been functionalized successfully with fused crown ether units. See, for example: a) B. Girmay, J. D. Kilburn, A. E. Underhill, K. S. Varma, M. B. Hursthouse, M. E. Harman, J. Becher, G. J. Bojesen, J. Chem. Soc. Chem. Commun. 1989, 1406-1409; b) J. Becher, T. K. Hansen, N. Malhotra, G. Bojesen, S. Bowadt, K. S. Varma, B. Girmay, J. D. Kilburn, A. E. Underhill, J. Chem. Soc. Perkin Trans. 1 1990, 175-177; c) B. Girmay, A. E. Underhill, J. D. Kilburn, T. K. Hansen, J. Becher, K. S. Varma, P. Roepstorff, J. Chem. Soc. Perkin Trans. 1 1992, 383-385. Some extensive reviews concerning TTF and its derivatives have appeared in the literature. See, for example: a) A. Krief, Tetrahedron 1986, 42, 1209-1252; b) G. Schukat, A. M. Richter, E. Fanghänel, Sulfur Reports 1987, 7, 155-240. For other catenanes and rotaxanes incorporating TTF, see: a) Z.-T. Li, P. C. Stein, N. Svenstrup, K. H. Lund, J. Becher, Angew. Chem. Int. Ed. Engl. 1995, 34, 2524-2528; b) Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Merk, N. Svenstrup, Chem. Eur. J. 1996, 2, 624-633; c) Z.-T. Li, J. Becher, Chem. Commun. 1996, 639-640.
    • (1996) Chem. Commun. , pp. 639-640
    • Li, Z.-T.1    Becher, J.2
  • 126
    • 85036482310 scopus 로고    scopus 로고
    • note
    • 6. Evident in the FABMS were peaks at m/z 2836, 2690, and 2545, corresponding to the loss of one, two, and three counterions, repectively, from the molecular assembly.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.