메뉴 건너뛰기




Volumn 50, Issue 6, 2005, Pages 1037-1052

Comparing the stream re-aeration coefficient estimated from ANN and empirical models

Author keywords

Artificial neural networks; Dissolved oxygen; India; Kali River; Re aeration coefficient; Stream; Water quality

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; OXYGEN; SHEAR STRESS; STREAM FLOW; WATER QUALITY;

EID: 28544447846     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.2005.50.6.1037     Document Type: Article
Times cited : (16)

References (56)
  • 1
    • 0003425384 scopus 로고
    • APHA (sixteenth edn.). American Public Health Association, Washington DC, USA
    • APHA (1985) Standard methods for the examination of water and wastewater (sixteenth edn.). American Public Health Association, Washington DC, USA.
    • (1985) Standard Methods for the Examination of Water and Wastewater
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee (2000b) Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0021060488 scopus 로고
    • Most rapid BOD assimilation in Ganga and Yamuna Rivers
    • Bhargava, D. S. (1983) Most rapid BOD assimilation in Ganga and Yamuna. rivers. J. Environ. Engng ASCE 109(1), 174-188.
    • (1983) J. Environ. Engng ASCE , vol.109 , Issue.1 , pp. 174-188
    • Bhargava, D.S.1
  • 5
    • 0001591988 scopus 로고
    • A multivariate analysis of re-aeration data
    • Cadwallader, T. E. & McDonnell, A. J. (1969) A multivariate analysis of re-aeration data. Water Res. 3, 731-742.
    • (1969) Water Res. , vol.3 , pp. 731-742
    • Cadwallader, T.E.1    McDonnell, A.J.2
  • 6
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 7
    • 0035083179 scopus 로고    scopus 로고
    • Modelling transient pH depressions in coastal streams of British Columbia using neural networks
    • Cannon, A. J. & Whitfield, P. H. (2001) Modelling transient pH depressions in coastal streams of British Columbia using neural networks. J. Am. Water Resour. Assoc. 37(1), 73-89.
    • (2001) J. Am. Water Resour. Assoc. , vol.37 , Issue.1 , pp. 73-89
    • Cannon, A.J.1    Whitfield, P.H.2
  • 8
    • 0037903280 scopus 로고    scopus 로고
    • Modelling and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin
    • Chibanga, R., Berlamont, J. & Vandewalle, J. (2003) Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 48(3), 363-379.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 10
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 11
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, C. W. & Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 0037388488 scopus 로고    scopus 로고
    • A fuzzy neural network model for deriving the river stage-discharge relationship
    • Deka, P. & Chandramouli, V. (2003) A fuzzy neural network model for deriving the river stage-discharge relationship. Hydrol. Sci. J. 48(2), 197-209.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 197-209
    • Deka, P.1    Chandramouli, V.2
  • 13
    • 28544434331 scopus 로고
    • Determination of reaeration coefficients for Ohio streams
    • Washington, DC, USA
    • Hren, J. (1994) Determination of reaeration coefficients for Ohio streams. US Geol. Survey WRI Report 84-4139, Washington, DC, USA.
    • (1994) US Geol. Survey WRI Report 84-4139
    • Hren, J.1
  • 14
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K-L., Gupta, H. V. & Sorooshian, S. (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 15
    • 0036027497 scopus 로고    scopus 로고
    • Neural network modelling of salinity variation in Apalanchicola River
    • Huang, W. & Foo, S. (2002) Neural network modelling of salinity variation in Apalanchicola River. Water Research 36, 356-362.
    • (2002) Water Research , vol.36 , pp. 356-362
    • Huang, W.1    Foo, S.2
  • 16
    • 0008554238 scopus 로고    scopus 로고
    • Predicting THM formation with artificial neural networks
    • Am. Soc. Civil Engrs
    • Hutton, P. H., Sandhu, N. & Chung, F. I. (1996) Predicting THM formation with artificial neural networks. Proc. North Am. Water and Envir. Conf., 3547-3556. Am. Soc. Civil Engrs.
    • (1996) Proc. North Am. Water and Envir. Conf. , pp. 3547-3556
    • Hutton, P.H.1    Sandhu, N.2    Chung, F.I.3
  • 17
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalization beyond the calibration range
    • Imrie, C. E., Durucan, S. & Korre, A. (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J. Hydrol. 233, 138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 18
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using artificial neural networks
    • Jain, S. K. (2001) Development of integrated sediment rating curves using artificial neural networks. J. Hydraul. Engng ASCE 127(1), 30-37.
    • (2001) J. Hydraul. Engng ASCE , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 19
    • 0034306715 scopus 로고    scopus 로고
    • Setting up stage-discharge relations using ANN
    • Jain, S. K. & Chalisgaonkar, D. (2000) Setting up stage-discharge relations using ANN. J. Hydrol. Engng ASCE 5(4), 428-433.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.4 , pp. 428-433
    • Jain, S.K.1    Chalisgaonkar, D.2
  • 20
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, A. & Srivastava, D. K. (1999) Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. ASCE 125(5), 263-271.
    • (1999) J. Water Resour. Plan. Manage. ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 21
    • 0035971629 scopus 로고    scopus 로고
    • Refinement of predictive reaeration equations for a typical Indian river
    • Jha, R., Ojha, C. S. P. & Bhatia, K. K. S. (2001) Refinement of predictive reaeration equations for a typical Indian river. Hydrol. Processes 15(6), 1047-1060.
    • (2001) Hydrol. Processes , vol.15 , Issue.6 , pp. 1047-1060
    • Jha, R.1    Ojha, C.S.P.2    Bhatia, K.K.S.3
  • 22
    • 0842349304 scopus 로고    scopus 로고
    • A supplementary approach for estimating reaeration rate coefficients
    • Jha, R., Ojha, C. S. P. & Bhatia, K. K. S. (2004) A supplementary approach for estimating reaeration rate coefficients. Hydrol. Processes 18, 65-79.
    • (2004) Hydrol. Processes , vol.18 , pp. 65-79
    • Jha, R.1    Ojha, C.S.P.2    Bhatia, K.K.S.3
  • 25
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment prediction and estimation
    • Kişi, Ö. (2004) Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment prediction and estimation. Hydrol. Sci. J. 49(6), 1025-1040.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.6 , pp. 1025-1040
    • Kişi, Ö.1
  • 26
    • 0004976991 scopus 로고
    • Turbulent diffusion and the reaeration coefficient
    • Krenkel, P. A. & Orlob, G. T. (1962) Turbulent diffusion and the reaeration coefficient. J. Sanit. Engng Div. ASCE 88(SA2), 53-83.
    • (1962) J. Sanit. Engng Div. ASCE , vol.88 , Issue.SA2 , pp. 53-83
    • Krenkel, P.A.1    Orlob, G.T.2
  • 28
    • 85012473378 scopus 로고
    • Principles of gas absorption
    • Lewis, W. W. & Whitman, W. G. (1924) Principles of gas absorption. Indust. Engng Chem. 16(2), 1215-1220.
    • (1924) Indust. Engng Chem. , vol.16 , Issue.2 , pp. 1215-1220
    • Lewis, W.W.1    Whitman, W.G.2
  • 29
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R. & Dandy, G. C. (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32(4), 1013-1022.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Software 15, 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 31
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 399-418.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-418
    • Minns, A.W.1    Hall, M.J.2
  • 32
    • 0001582225 scopus 로고    scopus 로고
    • Analysis of reaeration equations using mean multiplicative error
    • Moog, D. B. & Jirka, G. H. (1998) Analysis of reaeration equations using mean multiplicative error. J. Environ. Engng ASCE 112(2), 104-110.
    • (1998) J. Environ. Engng ASCE , vol.112 , Issue.2 , pp. 104-110
    • Moog, D.B.1    Jirka, G.H.2
  • 33
    • 0001620299 scopus 로고
    • Mechanism of reaeration in natural streams
    • O'Connor, D. J. & Dobbins, W. E. (1958) Mechanism of reaeration in natural streams. Trans. ASCE 123, 641-684.
    • (1958) Trans. ASCE , vol.123 , pp. 641-684
    • O'Connor, D.J.1    Dobbins, W.E.2
  • 35
    • 18244405477 scopus 로고
    • Estimating reaeration coefficients for low-slope streams in Massachusetts and New York, 1985-86
    • Parker, G. W. & DeSimone, I. A. (1992) Estimating reaeration coefficients for low-slope streams in Massachusetts and New York, 1985-86. US Geol. Survey Report no. WRI 91-4188.
    • (1992) US Geol. Survey Report No. WRI 91-4188
    • Parker, G.W.1    DeSimone, I.A.2
  • 37
    • 0344731307 scopus 로고    scopus 로고
    • Prediction of reaeration rates in square, stirred tanks
    • Rao, A. R. (1999) Prediction of reaeration rates in square, stirred tanks. J. Environ. Engng ASCE 125(3), 215-223.
    • (1999) J. Environ. Engng ASCE , vol.125 , Issue.3 , pp. 215-223
    • Rao, A.R.1
  • 38
    • 8644270745 scopus 로고    scopus 로고
    • Real-time control for matching wastewater discharges to the assimilative capacity of a complex, tidally affected river basin
    • (Myrtle Beach, South Carolina, USA, 15-16 March 1999
    • Roehl, E. A. & Conrads, P. A. (1999) Real-time control for matching wastewater discharges to the assimilative capacity of a complex, tidally affected river basin. In: Proc. 1999 South Carolina Environmental Conference (Myrtle Beach, South Carolina, USA, 15-16 March 1999. http://smig.usgs.gov/SMIG/features_0399/nnm2.html.
    • (1999) Proc. 1999 South Carolina Environmental Conference
    • Roehl, E.A.1    Conrads, P.A.2
  • 39
    • 28544437600 scopus 로고
    • Mean velocity, longitudinal dispersion and reaeration characteristics of selected streams in the Kentucky river basins
    • Louisville, Kentucky, USA
    • Ruhl, K. J. & Smoot, J. L. (1987) Mean velocity, longitudinal dispersion and reaeration characteristics of selected streams in the Kentucky river basins. US Geol. Survey Water Resources Investigation Report 87-4179, Louisville, Kentucky, USA.
    • (1987) US Geol. Survey Water Resources Investigation Report 87-4179
    • Ruhl, K.J.1    Smoot, J.L.2
  • 41
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, S. & Thandaveswara, B. S. (1999) A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, S.1    Thandaveswara, B.S.2
  • 42
    • 0002769566 scopus 로고    scopus 로고
    • Emulation of DWRDSM using artificial neural networks and estimation of Sacramento River flow from salinity
    • (New York) Am. Soc. Civil Engrs
    • Sandhu, N. & Finch, R. (1996) Emulation of DWRDSM using artificial neural networks and estimation of Sacramento River flow from salinity. Proc. North Am. Water and Env. Conf. (New York), 4335-4340. Am. Soc. Civil Engrs.
    • (1996) Proc. North Am. Water and Env. Conf. , pp. 4335-4340
    • Sandhu, N.1    Finch, R.2
  • 43
    • 0004958709 scopus 로고
    • An examination of stream reaeration coefficients and hydraulic conditions in a pool and riffle stream
    • PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
    • Smoot, J. L. (1988) An examination of stream reaeration coefficients and hydraulic conditions in a pool and riffle stream. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
    • (1988)
    • Smoot, J.L.1
  • 44
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P. & Dulal, K. N. (2003) Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48(3), 399-411.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 45
    • 0007829250 scopus 로고
    • A study of the pollution and natural purification of the Ohio river
    • Public Health Service, Washington DC, USA
    • Streeter, H. W. & Phelps, E. B. (1925) A study of the pollution and natural purification of the Ohio river. Public Health Bull. no. 146. Public Health Service, Washington DC, USA.
    • (1925) Public Health Bull. No. 146
    • Streeter, H.W.1    Phelps, E.B.2
  • 46
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer, K. P. (2005) Knowledge extraction from trained neural network river flow models. J. Hydrol. Engng ASCE 10(4), 264-269.
    • (2005) J. Hydrol. Engng ASCE , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 47
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer, K. P. & Jain, A. (2004) Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Processes 18, 833-844.
    • (2004) Hydrol. Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 48
    • 0004981470 scopus 로고
    • Simulation of water quality in streams and canals
    • Texas Water Development Board Report no. 128, Texas Department of Water Resources, Austin, USA
    • Texas Water Development Board (1971) Simulation of water quality in streams and canals. Report no. 128, Texas Department of Water Resources, Austin, USA.
    • (1971)
  • 49
    • 0035312513 scopus 로고    scopus 로고
    • Recalibration of a reaeration equation
    • Thackston, E. L. & Dawson, J. W. (2001) Recalibration of a reaeration equation. J. Environ. Engng ASCE 127(4), 317-321.
    • (2001) J. Environ. Engng ASCE , vol.127 , Issue.4 , pp. 317-321
    • Thackston, E.L.1    Dawson, J.W.2
  • 50
  • 52
    • 0003560465 scopus 로고
    • Characterization of stream reaeration capacity
    • Report no. EPA-R3-72-012, US Environ. Protection Agency, Washington DC, USA
    • Tsivoglou, E. C. & Wallace, J. R. (1972) Characterization of stream reaeration capacity. Report no. EPA-R3-72-012, US Environ. Protection Agency, Washington DC, USA.
    • (1972)
    • Tsivoglou, E.C.1    Wallace, J.R.2
  • 53
    • 0003443127 scopus 로고
    • Artificial Neural Networks: Concepts and Control Applications
    • IEEE Computer Society Press, California, USA
    • Vemuri, V. R. (1992) Artificial Neural Networks: Concepts and Control Applications. IEEE Computer Society Press, California, USA.
    • (1992)
    • Vemuri, V.R.1
  • 54
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 55
    • 0023964637 scopus 로고
    • Study of river reaeration at different flow rates
    • Wilcock, R. J. (1988) Study of river reaeration at different flow rates. J. Environ. Engng ASCE 114(1), 91-103.
    • (1988) J. Environ. Engng ASCE , vol.114 , Issue.1 , pp. 91-103
    • Wilcock, R.J.1
  • 56


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.