-
5
-
-
0033738436
-
-
E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, and M. Nesladek, Diamond Relat. Mater. 9, 948 (2000).
-
(2000)
Diamond Relat. Mater.
, vol.9
, pp. 948
-
-
Gheeraert, E.1
Koizumi, S.2
Teraji, T.3
Kanda, H.4
Nesladek, M.5
-
6
-
-
0033874348
-
-
E. Gheeraert, S. Koizumi, T. Teraji, and H. Kanda, Solid State Commun. 113, 577 (2000).
-
(2000)
Solid State Commun.
, vol.113
, pp. 577
-
-
Gheeraert, E.1
Koizumi, S.2
Teraji, T.3
Kanda, H.4
-
11
-
-
0032269632
-
-
See, for example, H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto, and N. Orita, Phys. Status Solidi B 210, 429 (1998).
-
(1998)
Phys. Status Solidi B
, vol.210
, pp. 429
-
-
Katayama-Yoshida, H.1
Nishimatsu, T.2
Yamamoto, T.3
Orita, N.4
-
15
-
-
1242329507
-
-
For diamond, a theoretical study about shallow single atom impurities (pnictogens and chalcogens) for n -type doping has been published in S. J. Sque, R. Jones, J. P. Gross, and P. R. Bridden, Phys. Rev. Lett. 92, 017402 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 017402
-
-
Sque, S.J.1
Jones, R.2
Gross, J.P.3
Bridden, P.R.4
-
16
-
-
0034988850
-
-
Several theoretical tests have been made. In case of codoping of ZnO, for example, see S. B. Zhang, S.-H. Wei, and Y. Yan, Physica B 0921-4526 302-303, 135 (2001) and Y. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).
-
(2001)
Physica B
, vol.302-303
, pp. 135
-
-
Zhang, S.B.1
Wei, S.-H.2
Yan, Y.3
-
17
-
-
0035907738
-
-
Several theoretical tests have been made. In case of codoping of ZnO, for example, see S. B. Zhang, S.-H. Wei, and Y. Yan, Physica B 0921-4526 302-303, 135 (2001) and Y. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5723
-
-
Yan, Y.1
Zhang, S.B.2
Pantelides, S.T.3
-
18
-
-
0142219832
-
-
In case of n -type doping of diamond, for example, D. Segev and S. H. Wei [Phys. Rev. Lett. 91, 126406 (2003)] propose a N+4Si complex which has the activation energy of only 0.09 eV.
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 126406
-
-
Segev, D.1
Wei, S.H.2
-
20
-
-
0001761871
-
-
33rd ed. (Shokabo, Tokyo
-
Wn = 1 Nn ! [(N0 +n Nn) (1-n) nn z (z-1)(n-2) σ] Nn { [(N0 +n Nn) n] ! (N0 n) ! }n, where z and σ are the nearest-neighbor number and symmetry number, respectively. Here we assume σ=1. For derivation of Wn, see, R. Kubo, Exercises of Statistical Physics (in Japanese), 33rd ed. (Shokabo, Tokyo, 1989), p. 400. Although Flory's approximation has been originally developed for one dimensional high polymers, its use may be justified in dilution cases (x∼ 10-6). See also A. J. Ramirez-Pastor, T. P. Eggarter, V. D. Pereyra, and J. L. Riccardo, Phys. Rev. B 59, 11027 (1999)).
-
(1989)
Exercises of Statistical Physics
, pp. 400
-
-
Kubo, R.1
-
21
-
-
0001761871
-
-
Wn = 1 Nn ! [(N0 +n Nn) (1-n) nn z (z-1)(n-2) σ] Nn { [(N0 +n Nn) n] ! (N0 n) ! }n, where z and σ are the nearest-neighbor number and symmetry number, respectively. Here we assume σ=1. For derivation of Wn, see, R. Kubo, Exercises of Statistical Physics (in Japanese), 33rd ed. (Shokabo, Tokyo, 1989), p. 400. Although Flory's approximation has been originally developed for one dimensional high polymers, its use may be justified in dilution cases (x∼ 10-6). See also A. J. Ramirez-Pastor, T. P. Eggarter, V. D. Pereyra, and J. L. Riccardo, Phys. Rev. B 59, 11027 (1999)).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 11027
-
-
Ramirez-Pastor, A.J.1
Eggarter, T.P.2
Pereyra, V.D.3
Riccardo, J.L.4
|