-
1
-
-
0032297845
-
Achieving an arbitrary stiffness with springs connected in parallel
-
S. Huang & J.M. Schimmels, Achieving an arbitrary stiffness with springs connected in parallel. ASME J. Mechanical Design. 120(4), 1998, 520-526.
-
(1998)
ASME J. Mechanical Design.
, vol.120
, Issue.4
, pp. 520-526
-
-
Huang, S.1
Schimmels, J.M.2
-
3
-
-
0003779401
-
-
Document No. FTD-HT-23-1632-67, Foreign Technology Division, Wright-Patterson Air Force Base, Ohio
-
P.M. Dimentberg, The screw calculus and its applications in mechanics, Document No. FTD-HT-23-1632-67, Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, 1965.
-
(1965)
The Screw Calculus and Its Applications in Mechanics
-
-
Dimentberg, P.M.1
-
4
-
-
0026398572
-
Kinestatic control: A novel theory for simultaneously regulating force and displacement
-
M. Griffis & J. Duffy, Kinestatic control: A novel theory for simultaneously regulating force and displacement, ASME J. Mechanical Design, 113(4), 1991, 508-515.
-
(1991)
ASME J. Mechanical Design
, vol.113
, Issue.4
, pp. 508-515
-
-
Griffis, M.1
Duffy, J.2
-
5
-
-
0027667655
-
Structure of robot compliance
-
T. Patterson & H. Lipkin, Structure of robot compliance, ASME J. Mechanical Design, 115(3), 1993, 576-580.
-
(1993)
ASME J. Mechanical Design
, vol.115
, Issue.3
, pp. 576-580
-
-
Patterson, T.1
Lipkin, H.2
-
6
-
-
0003729618
-
-
Doctoral diss., Harvard University, Cambridge, MA
-
J. Loncaric, Geometrical analysis of compliant mechanisms in robotics, Doctoral diss., Harvard University, Cambridge, MA, 1985.
-
(1985)
Geometrical Analysis of Compliant Mechanisms in Robotics
-
-
Loncaric, J.1
-
7
-
-
0032290642
-
Modeling of elastically coupled bodies: Part I - General theory and geometric potential function method
-
E.D. Fasse & P.C. Breedveld, Modeling of elastically coupled bodies: Part I - General theory and geometric potential function method, J. Dynamic Systems, Measurement and Control 120(4), 1998, 496-500.
-
(1998)
J. Dynamic Systems, Measurement and Control
, vol.120
, Issue.4
, pp. 496-500
-
-
Fasse, E.D.1
Breedveld, P.C.2
-
8
-
-
0032287980
-
Modeling of elastically coupled bodies: Part II - Exponential and generalized coordiate methods
-
E.D. Fasse & P.C. Breedveld, Modeling of elastically coupled bodies: Part II - Exponential and generalized coordiate methods. J. Dynamic Systems. Measurement and Control 120(4), 1998, 501-506.
-
(1998)
J. Dynamic Systems. Measurement and Control
, vol.120
, Issue.4
, pp. 501-506
-
-
Fasse, E.D.1
Breedveld, P.C.2
-
9
-
-
0027556454
-
Global stiffness modeling of a class of simple compliant couplings
-
M. Griffis & J. Duffy, Global stiffness modeling of a class of simple compliant couplings, Mechanism and Machine Theory, 28(2), 1993, 207-224.
-
(1993)
Mechanism and Machine Theory
, vol.28
, Issue.2
, pp. 207-224
-
-
Griffis, M.1
Duffy, J.2
-
10
-
-
0028602281
-
Asymmetric Cartesian stiffness for the modeling of compliant robotic systems
-
New York
-
N. Ciblak & H. Lipkin. Asymmetric Cartesian stiffness for the modeling of compliant robotic systems, The, ASME 23rd Biennial Mechanisms Conf., Design Engineering Division, DE-Vol. 72, New York, 1994.
-
(1994)
The, ASME 23rd Biennial Mechanisms Conf., Design Engineering Division
, vol.72 DE-VOL
-
-
Ciblak, N.1
Lipkin, H.2
-
11
-
-
0009472406
-
On the 6 × 6 stiffness matrix for three dimensional motions
-
W.S. Howard, M. Zefran, & V. Kumar, On the 6 × 6 stiffness matrix for three dimensional motions, Mechanism and Machine Theory, 55(4), 1996, 389-408.
-
(1996)
Mechanism and Machine Theory
, vol.55
, Issue.4
, pp. 389-408
-
-
Howard, W.S.1
Zefran, M.2
Kumar, V.3
-
12
-
-
0034263038
-
Conservative congruence tranformation for joint and Cartesian stiffness matrices of robotic hands and fingers
-
S. Chen & I. Kao. Conservative congruence tranformation for joint and Cartesian stiffness matrices of robotic hands and fingers. Int. J. Robotics Reseeearch. 19(9), 2000, 835-847.
-
(2000)
Int. J. Robotics Reseeearch.
, vol.19
, Issue.9
, pp. 835-847
-
-
Chen, S.1
Kao, I.2
-
13
-
-
0032098804
-
The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel
-
S. Huang & J.M. Schimmels, The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel, IEEE Trans. on Robotics and Automation, 14(3), 1998, 466-475.
-
(1998)
IEEE Trans. on Robotics and Automation
, vol.14
, Issue.3
, pp. 466-475
-
-
Huang, S.1
Schimmels, J.M.2
-
14
-
-
0033905556
-
The bounds and realization of spatial compliances achieved with simple serial elastic mechanisms
-
S. Huang & J.M. Schimmels, The bounds and realization of spatial compliances achieved with simple serial elastic mechanisms, IEEE Trans. on Robotics and Automation, 16(1), 2000, 99-103.
-
(2000)
IEEE Trans. on Robotics and Automation
, vol.16
, Issue.1
, pp. 99-103
-
-
Huang, S.1
Schimmels, J.M.2
-
15
-
-
0033334904
-
Minimal realization of a spatial stiffness matrix with simple springs connected in parallel
-
R.G. Roberts, Minimal realization of a spatial stiffness matrix with simple springs connected in parallel, IEEE Trans. on Robotics and Automation, 15(5), 1999, 953-958.
-
(1999)
IEEE Trans. on Robotics and Automation
, vol.15
, Issue.5
, pp. 953-958
-
-
Roberts, R.G.1
-
16
-
-
0032644119
-
Synthesis of Cartesian stiffness for robotic applications
-
Detroit, MI
-
N. Ciblak & H. Lipkin, Synthesis of Cartesian stiffness for robotic applications, Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, MI, 1999, 2147-2152.
-
(1999)
Proc. IEEE Int. Conf. on Robotics and Automation
, pp. 2147-2152
-
-
Ciblak, N.1
Lipkin, H.2
-
17
-
-
0033691712
-
The eigenscrew decomposition of spatial stiffness matrices
-
S. Huang & J.M. Schimmels, The eigenscrew decomposition of spatial stiffness matrices, IEEE Trans. on Robotics and Automation, 16(1), 2000, 146-156.
-
(2000)
IEEE Trans. on Robotics and Automation
, vol.16
, Issue.1
, pp. 146-156
-
-
Huang, S.1
Schimmels, J.M.2
-
18
-
-
0033300350
-
The degree of translational-rotational coupling of a spatial stiffness
-
Nashville, TN, November
-
S. Huang & J.M. Schimmels, The degree of translational-rotational coupling of a spatial stiffness. Proc. ASME Int. Mechanical Engineering Congress and Exposition, Nashville, TN, November 1999, 787-794.
-
(1999)
Proc. ASME Int. Mechanical Engineering Congress and Exposition
, pp. 787-794
-
-
Huang, S.1
Schimmels, J.M.2
-
19
-
-
0034291995
-
Minimal realization of an arbitrary spatial stiffness matrix with a parallel connection of simple springs and complex springs
-
R.G. Roberts, Minimal realization of an arbitrary spatial stiffness matrix with a parallel connection of simple springs and complex springs, IEEE Trans. on Robotics and Automation, 16(5), 2000, 603-608.
-
(2000)
IEEE Trans. on Robotics and Automation
, vol.16
, Issue.5
, pp. 603-608
-
-
Roberts, R.G.1
-
20
-
-
0003008848
-
Cones of diagonally dominant matrices
-
G.P. Barker & D. Carlson, Cones of diagonally dominant matrices, Pacific J. Mathematics, 57(1), 1975, 15-32.
-
(1975)
Pacific J. Mathematics
, vol.57
, Issue.1
, pp. 15-32
-
-
Barker, G.P.1
Carlson, D.2
-
21
-
-
0032682053
-
Mechanically implementable accommodation matrices for passive force control
-
A. Goswami & M. Peshkin, Mechanically implementable accommodation matrices for passive force control, Int. J. Robotics Research. 18(8), 1999, 830-844.
-
(1999)
Int. J. Robotics Research.
, vol.18
, Issue.8
, pp. 830-844
-
-
Goswami, A.1
Peshkin, M.2
-
24
-
-
0027662858
-
A classification of robot compliance
-
T. Patterson & H. Lipkin, A classification of robot compliance, ASME J. Mechanical Design. 115(3), 1993, 581-584.
-
(1993)
ASME J. Mechanical Design.
, vol.115
, Issue.3
, pp. 581-584
-
-
Patterson, T.1
Lipkin, H.2
-
25
-
-
0023566054
-
Normal forms of stiffness and compliance matrices
-
J. Loncaric. Normal forms of stiffness and compliance matrices, IEEE J. Robotics and Automation, 3(6), 1987, 567-572.
-
(1987)
IEEE J. Robotics and Automation
, vol.3
, Issue.6
, pp. 567-572
-
-
Loncaric, J.1
|