메뉴 건너뛰기




Volumn 23, Issue 22, 2003, Pages 8386-8394

Origin of Endogenous DNA Abasic Sites in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

APURINIC APYRIMIDINIC ENDODEOXYRIBONUCLEASE 1; APURINIC APYRIMIDINIC ENDODEOXYRIBONUCLEASE 2; CYTOSINE; DEOXYURIDINE TRIPHOSPHATE PYROPHOSPHATASE; DNA; DNA (APURINIC OR APYRIMIDINIC SITE) LYASE; DNA GLYCOSYLTRANSFERASE; UNCLASSIFIED DRUG; URACIL; URACIL DNA GLYCOSYLTRANSFERASE;

EID: 0242412184     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.23.22.8386-8394.2003     Document Type: Article
Times cited : (80)

References (60)
  • 1
    • 0032837333 scopus 로고    scopus 로고
    • Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts
    • Baldo, Angela M., and Marcella A. McClure. 1999. Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts. J. Virol. 73:7710-7721.
    • (1999) J. Virol. , vol.73 , pp. 7710-7721
    • Baldo, A.M.1    McClure, M.A.2
  • 2
    • 0026530466 scopus 로고
    • Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins
    • Bankmann, M., L. Prakash, and S. Prakash. 1992. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 355:555-558.
    • (1992) Nature , vol.355 , pp. 555-558
    • Bankmann, M.1    Prakash, L.2    Prakash, S.3
  • 3
    • 0032980426 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis
    • Bennett, Richard A. O. 1999. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. Mol. Cell. Biol. 19: 1800-1809.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 1800-1809
    • Bennett, R.A.O.1
  • 4
    • 0032518911 scopus 로고    scopus 로고
    • Release of normal bases from intact DNA by a native DNA repair enzyme
    • Berdal, K. G., R. F. Johansen, and E. Seeberg. 1998. Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J. 17:363-367.
    • (1998) EMBO J. , vol.17 , pp. 363-367
    • Berdal, K.G.1    Johansen, R.F.2    Seeberg, E.3
  • 5
    • 0030634292 scopus 로고    scopus 로고
    • Oxidative damage to DNA: Formation, measurement, and biological significance
    • Cadet, J., M. Berger, T. Douki, and J. L. Ravanat. 1997. Oxidative damage to DNA: formation, measurement, and biological significance. Rev. Physiol. Biochem. Pharmacol. 131:1-87.
    • (1997) Rev. Physiol. Biochem. Pharmacol. , vol.131 , pp. 1-87
    • Cadet, J.1    Berger, M.2    Douki, T.3    Ravanat, J.L.4
  • 6
    • 0004732033 scopus 로고
    • Cloning a eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherichia coli
    • Chen, J., B. Derfler, A. Maskati, and L. Samson. 1989. Cloning a eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherichia coli. Proc. Natl. Acad. Sci. USA 86:7961-7965.
    • (1989) Proc. Natl. Acad. Sci. USA , vol.86 , pp. 7961-7965
    • Chen, J.1    Derfler, B.2    Maskati, A.3    Samson, L.4
  • 7
    • 0028342951 scopus 로고
    • Repair of oxidative damage to DNA: Enzymology and biology
    • Demple, B., and L. Harrison. 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63:915-948.
    • (1994) Annu. Rev. Biochem. , vol.63 , pp. 915-948
    • Demple, B.1    Harrison, L.2
  • 8
    • 0020461949 scopus 로고
    • Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli
    • Duncan, Bruce K., and Bernard Weiss. 1982. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J. Bacteriol. 151:750-755.
    • (1982) J. Bacteriol. , vol.151 , pp. 750-755
    • Duncan, B.K.1    Weiss, B.2
  • 9
    • 0026711129 scopus 로고
    • Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth
    • el-Hajj, Hiyam H., Linghua Wang, and Bernard Weiss. 1992. Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth. J. Bacteriol. 174:4450-4456.
    • (1992) J. Bacteriol. , vol.174 , pp. 4450-4456
    • El-Hajj, H.H.1    Wang, L.2    Weiss, B.3
  • 10
    • 0025310204 scopus 로고
    • Escherichia coli strains with multiple DNA repair defects are hyperinduced for the SOS response
    • Foster, Patricia L. 1990. Escherichia coli strains with multiple DNA repair defects are hyperinduced for the SOS response. J. Bacteriol. 172:4719-4720.
    • (1990) J. Bacteriol. , vol.172 , pp. 4719-4720
    • Foster, P.L.1
  • 12
    • 0027426749 scopus 로고
    • dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae
    • Gadsden, M. H., E. M. McIntosh, J. C. Game, P. J. Wilson, and R. H. Haynes. 1993. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12:4425-4431.
    • (1993) EMBO J. , vol.12 , pp. 4425-4431
    • Gadsden, M.H.1    McIntosh, E.M.2    Game, J.C.3    Wilson, P.J.4    Haynes, R.H.5
  • 13
    • 0034922788 scopus 로고    scopus 로고
    • Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae
    • Gellon, L., R. Barbey, P. Auffret van der Kemp, D. Thomas, and S. Boiteux. 2001. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Mol. Genet. Genomics 265:1087-1096.
    • (2001) Mol. Genet. Genomics , vol.265 , pp. 1087-1096
    • Gellon, L.1    Barbey, R.2    Auffret van der Kemp, P.3    Thomas, D.4    Boiteux, S.5
  • 14
    • 0026562884 scopus 로고
    • Improved method for high efficiency transformation of intact yeast cells
    • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
    • (1992) Nucleic Acids Res. , vol.20 , pp. 1425
    • Gietz, D.1    St. Jean, A.2    Woods, R.A.3    Schiestl, R.H.4
  • 15
    • 0037013854 scopus 로고    scopus 로고
    • Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae
    • Guillet, M., and S. Boiteux. 2002. Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae. EMBO J. 21:2833-2841.
    • (2002) EMBO J. , vol.21 , pp. 2833-2841
    • Guillet, M.1    Boiteux, S.2
  • 18
    • 0035902108 scopus 로고    scopus 로고
    • Genome maintenance mechanisms for preventing cancer
    • Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411:366-374.
    • (2001) Nature , vol.411 , pp. 366-374
    • Hoeijmakers, J.H.1
  • 19
    • 0025790276 scopus 로고
    • The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair
    • Impellizzeri, Kimberly J., Blake Anderson, and Peter M. J. Burgers. 1991. The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair. J. Bacteriol. 173:6807-6810.
    • (1991) J. Bacteriol. , vol.173 , pp. 6807-6810
    • Impellizzeri, K.J.1    Anderson, B.2    Burgers, P.M.J.3
  • 20
    • 0032190633 scopus 로고    scopus 로고
    • Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites
    • Johnson, Robert E., Carlos A. Torres-Ramos, Tadahide Izumi, Sankar Mitra, Satya Prakash, and Louise Prakash. 1998. Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev. 12:3137-3143.
    • (1998) Genes Dev. , vol.12 , pp. 3137-3143
    • Johnson, R.E.1    Torres-Ramos, C.A.2    Izumi, T.3    Mitra, S.4    Prakash, S.5    Prakash, L.6
  • 21
    • 18644363009 scopus 로고    scopus 로고
    • hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
    • Kavli, B., O. Sundheim, M. Akbari, M. Otterlei, H. Nilsen, F. Skorpen, P. A. Aas, L. Hagen, H. E. Krokan, and G. Slupphaug. 2002. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277:39926-39936.
    • (2002) J. Biol. Chem. , vol.277 , pp. 39926-39936
    • Kavli, B.1    Sundheim, O.2    Akbari, M.3    Otterlei, M.4    Nilsen, H.5    Skorpen, F.6    Aas, P.A.7    Hagen, L.8    Krokan, H.E.9    Slupphaug, G.10
  • 23
    • 0030861915 scopus 로고    scopus 로고
    • DNA glycosylases in the base excision repair of DNA
    • Krokan, H. E., R. Standal, and G. Slupphaug. 1997. DNA glycosylases in the base excision repair of DNA. Biochem J. 325:1-16.
    • (1997) Biochem J. , vol.325 , pp. 1-16
    • Krokan, H.E.1    Standal, R.2    Slupphaug, G.3
  • 24
    • 0035902585 scopus 로고    scopus 로고
    • Single-strand interruptions in replicating chromosomes cause double-strand breaks
    • Kuzminov, A. 2001. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc. Natl. Acad. Sci. USA 98:8241-8246.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 8241-8246
    • Kuzminov, A.1
  • 25
    • 0029912969 scopus 로고    scopus 로고
    • Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase
    • Ladner, R. D., D. E. McNulty, S. A. Carr, G. D. Roberts, and S. J. Caradonna. 1996. Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. J. Biol. Chem. 271: 7745-7751.
    • (1996) J. Biol. Chem. , vol.271 , pp. 7745-7751
    • Ladner, R.D.1    McNulty, D.E.2    Carr, S.A.3    Roberts, G.D.4    Caradonna, S.J.5
  • 26
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709-715.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 27
    • 0015504248 scopus 로고
    • Rate of depurination of native deoxyribonucleic acid
    • Lindahl, T., and B. Nyberg. 1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610-3618.
    • (1972) Biochemistry , vol.11 , pp. 3610-3618
    • Lindahl, T.1    Nyberg, B.2
  • 28
    • 0033520969 scopus 로고    scopus 로고
    • Quality control by DNA repair
    • Lindahl, T., and R. D. Wood. 1999. Quality control by DNA repair. Science 286:1897-1905.
    • (1999) Science , vol.286 , pp. 1897-1905
    • Lindahl, T.1    Wood, R.D.2
  • 29
    • 0036667452 scopus 로고    scopus 로고
    • Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG
    • Liu, P., A. Burdzy, and L. C. Sowers. 2002. Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG. Chem. Res. Toxicol. 15:1001-1009.
    • (2002) Chem. Res. Toxicol. , vol.15 , pp. 1001-1009
    • Liu, P.1    Burdzy, A.2    Sowers, L.C.3
  • 30
    • 0022037404 scopus 로고
    • Apurinic sites as mutagenic intermediates
    • Loeb, L. A. 1985. Apurinic sites as mutagenic intermediates. Cell 40:483-484.
    • (1985) Cell , vol.40 , pp. 483-484
    • Loeb, L.A.1
  • 31
    • 0028586017 scopus 로고
    • Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression
    • Mumberg, D., R. Muller, and M. Funk. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:5767-5768.
    • (1994) Nucleic Acids Res. , vol.22 , pp. 5767-5768
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 32
    • 0030996226 scopus 로고    scopus 로고
    • A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A
    • Nagelhus, T. A., T. Haug, K. K. Singh, K. F. Keshav, F. Skorpen, M. Otterlei, S. Bharati, T. Lindmo, S. Benichou, R. Benarous, and H. E. Krokan. 1997. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 272:6561-6566.
    • (1997) J. Biol. Chem. , vol.272 , pp. 6561-6566
    • Nagelhus, T.A.1    Haug, T.2    Singh, K.K.3    Keshav, K.F.4    Skorpen, F.5    Otterlei, M.6    Bharati, S.7    Lindmo, T.8    Benichou, S.9    Benarous, R.10    Krokan, H.E.11
  • 33
    • 0033152195 scopus 로고    scopus 로고
    • Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues
    • Nakamura, J., and J. A. Swenberg. 1999. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59:2522-2526.
    • (1999) Cancer Res. , vol.59 , pp. 2522-2526
    • Nakamura, J.1    Swenberg, J.A.2
  • 34
    • 0031984807 scopus 로고    scopus 로고
    • Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions
    • Nakamura, J., V. E. Walker, P. B. Upton, S. Y. Chiang, Y. W. Kow, and J. A. Swenberg. 1998. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58:222-225.
    • (1998) Cancer Res. , vol.58 , pp. 222-225
    • Nakamura, J.1    Walker, V.E.2    Upton, P.B.3    Chiang, S.Y.4    Kow, Y.W.5    Swenberg, J.A.6
  • 36
    • 0035421186 scopus 로고    scopus 로고
    • Excision of deaminated cytosine from the vertebrate genome: Role of the SMUG1 uracil-DNA glycosylase
    • Nilsen, H., K. A. Haushalter, P. Robins, D. E. Barnes, G. L. Verdine, and T. Lindahl. 2001. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20:4278-4286.
    • (2001) EMBO J. , vol.20 , pp. 4278-4286
    • Nilsen, H.1    Haushalter, K.A.2    Robins, P.3    Barnes, D.E.4    Verdine, G.L.5    Lindahl, T.6
  • 37
    • 0030841051 scopus 로고    scopus 로고
    • Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene
    • Nilsen, H., M, Otterlei, T. Haug, K. Solum, T. A. Nagelhus, F. Skorpen, and H. E. Krokan. 1997. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25:750-755.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 750-755
    • Nilsen, H.1    Otterlei, M.2    Haug, T.3    Solum, K.4    Nagelhus, T.A.5    Skorpen, F.6    Krokan, H.E.7
  • 39
    • 0023898319 scopus 로고
    • Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis
    • O'Connor, T. R., S. Boiteux, and J. Laval. 1988. Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis. Nucleic Acids Res. 16:5879-5894.
    • (1988) Nucleic Acids Res. , vol.16 , pp. 5879-5894
    • O'Connor, T.R.1    Boiteux, S.2    Laval, J.3
  • 41
    • 0024969622 scopus 로고
    • Molecular cloning and primary structure of the uracil-DNA-glycosylase gene from Saccharomyces cerevisiae
    • Percival, K. J., M. B. Klein, and P. M. Burgers. 1989. Molecular cloning and primary structure of the uracil-DNA-glycosylase gene from Saccharomyces cerevisiae. J. Biol. Chem. 264:2593-2598.
    • (1989) J. Biol. Chem. , vol.264 , pp. 2593-2598
    • Percival, K.J.1    Klein, M.B.2    Burgers, P.M.3
  • 42
    • 0025324303 scopus 로고
    • Yeast structural gene (APN1) for the major apurinic endonuclease: Homology to Escherichia coli endonuclease IV
    • Popoff, S. C., A. I. Spira, A. W. Johnson, and B. Demple. 1990. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc. Natl. Acad. Sci. USA 87:4193-4197.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 4193-4197
    • Popoff, S.C.1    Spira, A.I.2    Johnson, A.W.3    Demple, B.4
  • 43
    • 0025864553 scopus 로고
    • Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: Repair of oxidative and alkylation DNA damage and control of spontaneous mutation
    • Ramotar, Dindial, Sonya C. Popoff, Edith B. Gralla, and Bruce Demple. 1991. Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol. Cell. Biol. 11:4537-4544.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4537-4544
    • Ramotar, D.1    Popoff, S.C.2    Gralla, E.B.3    Demple, B.4
  • 44
    • 0020803243 scopus 로고
    • Genetic effects of UV irradiation on excision-proficient and -deficient yeast during meiosis
    • Resnick, M. A., J. C. Game, and S. Stasiewicz. 1983. Genetic effects of UV irradiation on excision-proficient and -deficient yeast during meiosis. Genetics 104:603-618.
    • (1983) Genetics , vol.104 , pp. 603-618
    • Resnick, M.A.1    Game, J.C.2    Stasiewicz, S.3
  • 45
    • 0020341190 scopus 로고
    • Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction
    • Rydberg, B., and T. Lindahl. 1982. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1:211-216.
    • (1982) EMBO J. , vol.1 , pp. 211-216
    • Rydberg, B.1    Lindahl, T.2
  • 46
    • 0037124349 scopus 로고    scopus 로고
    • A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site
    • Sartori, A. A., S. Fitz-Gibbon, H. Yang, J. H. Miller, and J. Jiricny. 2002. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J. 21:3182-3191.
    • (2002) EMBO J. , vol.21 , pp. 3182-3191
    • Sartori, A.A.1    Fitz-Gibbon, S.2    Yang, H.3    Miller, J.H.4    Jiricny, J.5
  • 47
    • 0035111895 scopus 로고    scopus 로고
    • Recent progress in the biology, chemistry and structural biology of DNA glycosylases
    • Scharer, O. D., and J. Jiricny. 2001. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23:270-281.
    • (2001) Bioessays , vol.23 , pp. 270-281
    • Scharer, O.D.1    Jiricny, J.2
  • 48
    • 0032401931 scopus 로고    scopus 로고
    • Substrate specificities of the Ntg1 and Ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical
    • Senturker, S., P. Auffret van der Kemp, H. J. You, P. W. Doetsch, M. Dizdaroglu, and S. Boiteux. 1998. Substrate specificities of the Ntg1 and Ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Res. 26:5270-5276.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 5270-5276
    • Senturker, S.1    Auffret van der Kemp, P.2    You, H.J.3    Doetsch, P.W.4    Dizdaroglu, M.5    Boiteux, S.6
  • 49
    • 0013923772 scopus 로고
    • The deamination of cytidine and cytosine by acidic buffer solutions: Mutagenic implications
    • Shapiro, R., and R. S. Klein. 1966. The deamination of cytidine and cytosine by acidic buffer solutions: mutagenic implications. Biochemistry 5:2358-2362.
    • (1966) Biochemistry , vol.5 , pp. 2358-2362
    • Shapiro, R.1    Klein, R.S.2
  • 51
    • 0032913570 scopus 로고    scopus 로고
    • Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae
    • Swanson, Rebecca L., Natalie J. Morey, Paul W. Doetsch, and Sue Jinks-Robertson. 1999. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:2929-2935.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2929-2935
    • Swanson, R.L.1    Morey, N.J.2    Doetsch, P.W.3    Jinks-Robertson, S.4
  • 52
    • 0030929349 scopus 로고    scopus 로고
    • Inactivation of OGG1 increases the incidence of G. C→T. A transversions in Saccharomyces cerevisiae: Evidence for endogenous oxidative damage to DNA in eukaryotic cells
    • Thomas, D., A. D. Scot, R. Barbey, M. Padula, and S. Boiteux. 1997. Inactivation of OGG1 increases the incidence of G. C→T. A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol. Gen. Genet. 254:171-178.
    • (1997) Mol. Gen. Genet. , vol.254 , pp. 171-178
    • Thomas, D.1    Scot, A.D.2    Barbey, R.3    Padula, M.4    Boiteux, S.5
  • 53
    • 0030885666 scopus 로고    scopus 로고
    • CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
    • Toczyski, D. P., D. J. Galgoczy, and L. H. Hartwell. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097-1106.
    • (1997) Cell , vol.90 , pp. 1097-1106
    • Toczyski, D.P.1    Galgoczy, D.J.2    Hartwell, L.H.3
  • 54
    • 0024508509 scopus 로고
    • Uracil-DNA glycosylases and DNA uracil repair
    • Tomilin, N. V., and O. N. Aprelikova. 1989. Uracil-DNA glycosylases and DNA uracil repair. Int. Rev. Cytol. 114:125-179.
    • (1989) Int. Rev. Cytol. , vol.114 , pp. 125-179
    • Tomilin, N.V.1    Aprelikova, O.N.2
  • 55
    • 0034108218 scopus 로고    scopus 로고
    • Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast
    • Torres-Ramos, Carlos A., Robert E. Johnson, Louise Prakash, and Satya Prakash. 2000. Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast. Mol. Cell. Biol. 20:3522-3528.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 3522-3528
    • Torres-Ramos, C.A.1    Johnson, R.E.2    Prakash, L.3    Prakash, S.4
  • 57
    • 0034746231 scopus 로고    scopus 로고
    • 3′-phosphodiesterase and 3′→5′ exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage
    • Unk, Ildiko, Lajos Haracska, Satya Prakash, and Louise Prakash. 2001. 3′-phosphodiesterase and 3′→5′ exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage. Mol. Cell. Biol. 21:1656-1661.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 1656-1661
    • Unk, I.1    Haracska, L.2    Prakash, S.3    Prakash, L.4
  • 58
    • 0029896229 scopus 로고    scopus 로고
    • Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7, 8-dihydro-8-oxoguanine and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine
    • van der Kemp, P. A., D. Thomas, R. Barbey, R. de Oliveira, and S. Boiteux. 1996. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7, 8-dihydro-8-oxoguanine and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93:5197-5202.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 5197-5202
    • Van der Kemp, P.A.1    Thomas, D.2    Barbey, R.3    De Oliveira, R.4    Boiteux, S.5
  • 59
    • 0035915411 scopus 로고    scopus 로고
    • Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases
    • Xiao, W., B. L. Chow, M. Hanna, and P. W. Doetsch. 2001. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Mutat. Res. 487:137-147.
    • (2001) Mutat. Res. , vol.487 , pp. 137-147
    • Xiao, W.1    Chow, B.L.2    Hanna, M.3    Doetsch, P.W.4
  • 60
    • 0037215540 scopus 로고    scopus 로고
    • The stalling of transcription at abasic sites is highly mutagenic
    • Yu, Sung-Lim, Sung-Kun Lee, Robert E. Johnson, Louise Prakash, and Satya Prakash. 2003. The stalling of transcription at abasic sites is highly mutagenic. Mol. Cell. Biol. 23:382-388.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 382-388
    • Yu, S.-L.1    Lee, S.-K.2    Johnson, R.E.3    Prakash, L.4    Prakash, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.