메뉴 건너뛰기




Volumn 13, Issue 1, 2003, Pages 122-129

Ras-effector interactions: After one decade

Author keywords

[No Author keywords available]

Indexed keywords

ADENYLATE CYCLASE; EPIDERMAL GROWTH FACTOR; GALECTIN 1; GUANOSINE DIPHOSPHATE; GUANOSINE TRIPHOSPHATASE; GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN; GUANOSINE TRIPHOSPHATE; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN CDC42; PROTEIN KINASE N; PROTEIN P21; RAB PROTEIN; RAC PROTEIN; RAF PROTEIN; RAL PROTEIN; RAN PROTEIN; RAP PROTEIN; RAS PROTEIN; RHO FACTOR;

EID: 0037308836     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-440X(02)00007-6     Document Type: Review
Times cited : (149)

References (64)
  • 1
    • 0034213327 scopus 로고    scopus 로고
    • Rho GTPases and their effector proteins
    • Bishop A.L., Hall A. Rho GTPases and their effector proteins. Biochem. J. 348:2000;241-255.
    • (2000) Biochem. J. , vol.348 , pp. 241-255
    • Bishop, A.L.1    Hall, A.2
  • 2
    • 0035865137 scopus 로고    scopus 로고
    • Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility
    • Sahai E., Olson M.F., Marshall C.J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20:2001;755-766.
    • (2001) EMBO J. , vol.20 , pp. 755-766
    • Sahai, E.1    Olson, M.F.2    Marshall, C.J.3
  • 3
    • 0036488510 scopus 로고    scopus 로고
    • Rho GTPases and cancer
    • Sahai E., Marshall C.J. Rho GTPases and cancer. Nat. Rev. 2:2002;133-142.
    • (2002) Nat. Rev. , vol.2 , pp. 133-142
    • Sahai, E.1    Marshall, C.J.2
  • 4
    • 0035425411 scopus 로고    scopus 로고
    • Ypt and Rab GTPases: Insight into functions through novel interactions
    • Segev N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13:2001;500-511.
    • (2001) Curr. Opin. Cell Biol. , vol.13 , pp. 500-511
    • Segev, N.1
  • 5
    • 0035203632 scopus 로고    scopus 로고
    • Transport into and out of the nucleus
    • Macara I.G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65:2001;570-594.
    • (2001) Microbiol. Mol. Biol. Rev. , vol.65 , pp. 570-594
    • Macara, I.G.1
  • 6
    • 0035503309 scopus 로고    scopus 로고
    • Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms
    • Niemann H.H., Knetsch M.L.W., Scherer A., Manstein D.J., Kull F.J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20:2001;5813-5821.
    • (2001) EMBO J. , vol.20 , pp. 5813-5821
    • Niemann, H.H.1    Knetsch, M.L.W.2    Scherer, A.3    Manstein, D.J.4    Kull, F.J.5
  • 7
    • 0034598734 scopus 로고    scopus 로고
    • Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins
    • Prakash B., Praefcke G.J.K., Renault L., Wittinghofer A., Herrmann C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature. 403:2000;567-571.
    • (2000) Nature , vol.403 , pp. 567-571
    • Prakash, B.1    Praefcke, G.J.K.2    Renault, L.3    Wittinghofer, A.4    Herrmann, C.5
  • 8
    • 0029665424 scopus 로고    scopus 로고
    • Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP
    • Geyer M., Schweins T., Herrmann C., Prisner T., Wittinghofer A., Kalbitzer H.R. Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry. 35:1996;10308-10320.
    • (1996) Biochemistry , vol.35 , pp. 10308-10320
    • Geyer, M.1    Schweins, T.2    Herrmann, C.3    Prisner, T.4    Wittinghofer, A.5    Kalbitzer, H.R.6
  • 10
    • 0029913467 scopus 로고    scopus 로고
    • Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor
    • Herrmann C., Horn G., Spaargaren M., Wittinghofer A. Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271:1996;6794-6800.
    • (1996) J. Biol. Chem. , vol.271 , pp. 6794-6800
    • Herrmann, C.1    Horn, G.2    Spaargaren, M.3    Wittinghofer, A.4
  • 12
    • 0035067187 scopus 로고    scopus 로고
    • GTP-dependent segregation of H-ras from lipid rafts is required for biological activity
    • H-Ras and K-Ras are found to be localized in different microdomains of the plasma membrane. The redistribution of H-Ras from lipid rafts to bulk membrane, controlled by GTP binding, is important for efficient activation of Raf.
    • Prior I.A., Harding A., Yan J., Sluimer J., Parton R.G., Hancock J.F. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell Biol. 3:2001;368-375 H-Ras and K-Ras are found to be localized in different microdomains of the plasma membrane. The redistribution of H-Ras from lipid rafts to bulk membrane, controlled by GTP binding, is important for efficient activation of Raf.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 368-375
    • Prior, I.A.1    Harding, A.2    Yan, J.3    Sluimer, J.4    Parton, R.G.5    Hancock, J.F.6
  • 13
    • 0033546419 scopus 로고    scopus 로고
    • Four human Ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility
    • Voice J.K., Klemke R.L., Le A., Jackson J.H. Four human Ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J. Biol. Chem. 274:1999;17164-17170.
    • (1999) J. Biol. Chem. , vol.274 , pp. 17164-17170
    • Voice, J.K.1    Klemke, R.L.2    Le, A.3    Jackson, J.H.4
  • 14
    • 0029107760 scopus 로고
    • The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue
    • Nassar N., Horn G., Herrmann C., Scherer A., McCormick F., Wittinghofer A. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature. 375:1995;554-560.
    • (1995) Nature , vol.375 , pp. 554-560
    • Nassar, N.1    Horn, G.2    Herrmann, C.3    Scherer, A.4    McCormick, F.5    Wittinghofer, A.6
  • 15
    • 0031228462 scopus 로고    scopus 로고
    • Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling
    • Geyer M., Herrmann C., Wohlgemuth S., Wittinghofer A., Kalbitzer H.R. Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat. Struct. Biol. 4:1997;694-699.
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 694-699
    • Geyer, M.1    Herrmann, C.2    Wohlgemuth, S.3    Wittinghofer, A.4    Kalbitzer, H.R.5
  • 16
    • 0030863611 scopus 로고    scopus 로고
    • Three-dimensional structure of the Ras-interacting domain of RalGDS
    • Huang L., Weng X.W., Hofer F., Martin G.S., Kim S.H. Three-dimensional structure of the Ras-interacting domain of RalGDS. Nat. Struct. Biol. 4:1997;609-615.
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 609-615
    • Huang, L.1    Weng, X.W.2    Hofer, F.3    Martin, G.S.4    Kim, S.H.5
  • 18
    • 0032578560 scopus 로고    scopus 로고
    • Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf
    • Esser D., Bauer B., Wolthuis R.M.F., Wittinghofer A., Cool R.H., Bayer P. Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf. Biochemistry. 37:1998;13453-13462.
    • (1998) Biochemistry , vol.37 , pp. 13453-13462
    • Esser, D.1    Bauer, B.2    Wolthuis, R.M.F.3    Wittinghofer, A.4    Cool, R.H.5    Bayer, P.6
  • 19
    • 0033581886 scopus 로고    scopus 로고
    • Structural insights into phosphoinositide 3-kinase catalysis and signalling
    • Walker E.H., Perisic O., Ried C., Stephens L., Williams R.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature. 402:1999;313-320.
    • (1999) Nature , vol.402 , pp. 313-320
    • Walker, E.H.1    Perisic, O.2    Ried, C.3    Stephens, L.4    Williams, R.L.5
  • 20
  • 21
    • 0031778630 scopus 로고    scopus 로고
    • Structural basis for the interaction of Ras with RalGDS
    • Huang L., Hofer F., Martin G.S., Kim S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5:1998;422-426.
    • (1998) Nat. Struct. Biol. , vol.5 , pp. 422-426
    • Huang, L.1    Hofer, F.2    Martin, G.S.3    Kim, S.H.4
  • 23
    • 0033635157 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma
    • The crystal structure of PI3Kγ in complex with Ras has been solved, revealing a significant conformational change and thereby suggesting an allosteric mechanism of activation. Specific differences compared to the complexes of Ras with Raf and RalGDS are highlighted; a loop in the RBD seems to be responsible for these. Particularly, direct contacts of Ras not only with the RBD but also with the catalytic domain of PI3Kγ are established. In addition, the paper shows interesting data on the kinetics of interaction and a mutational analysis of the interaction - including PI3Kγ activation in vivo
    • Pacold M.E., Suire S., Perisic O., Lara-Gonzalez S., Davis C.T., Walker E.H., Hawkins P.T., Stephens L., Eccleston J.F., Williams R.L. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell. 103:2000;931-943 The crystal structure of PI3Kγ in complex with Ras has been solved, revealing a significant conformational change and thereby suggesting an allosteric mechanism of activation. Specific differences compared to the complexes of Ras with Raf and RalGDS are highlighted; a loop in the RBD seems to be responsible for these. Particularly, direct contacts of Ras not only with the RBD but also with the catalytic domain of PI3Kγ are established. In addition, the paper shows interesting data on the kinetics of interaction and a mutational analysis of the interaction - including PI3Kγ activation in vivo.
    • (2000) Cell , vol.103 , pp. 931-943
    • Pacold, M.E.1    Suire, S.2    Perisic, O.3    Lara-Gonzalez, S.4    Davis, C.T.5    Walker, E.H.6    Hawkins, P.T.7    Stephens, L.8    Eccleston, J.F.9    Williams, R.L.10
  • 26
    • 0032568655 scopus 로고    scopus 로고
    • Smart, a simple modular architecture research tool - Identification of signaling domains
    • Schultz J., Milpetz F., Bork P., Ponting C.P. Smart, a simple modular architecture research tool - identification of signaling domains. Proc. Natl. Acad. Sci. U.S.A. 95:1998;5857-5864.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 5857-5864
    • Schultz, J.1    Milpetz, F.2    Bork, P.3    Ponting, C.P.4
  • 29
    • 0034254923 scopus 로고    scopus 로고
    • The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin
    • Boettner B., Govek E.E., Cross J., Van Aelst L. The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc. Natl. Acad. Sci. U.S.A. 97:2000;9064-9069.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 9064-9069
    • Boettner, B.1    Govek, E.E.2    Cross, J.3    Van Aelst, L.4
  • 30
    • 0036479287 scopus 로고    scopus 로고
    • Critical function of the ras-associating domain as a primary ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase
    • With the help of a computer algorithm, a small protein domain in yeast adenylate cyclase was identified and shown to be responsible for Ras binding. Biochemical evidence and secondary structure prediction suggest high similarity to the RBDs of mammalian effectors such as Raf, RalGDS and PI3K
    • Kido M., Shima F., Satoh T., Asato T., Kariya K., Kataoka T. Critical function of the ras-associating domain as a primary ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase. J. Biol. Chem. 277:2002;3117-3123 With the help of a computer algorithm, a small protein domain in yeast adenylate cyclase was identified and shown to be responsible for Ras binding. Biochemical evidence and secondary structure prediction suggest high similarity to the RBDs of mammalian effectors such as Raf, RalGDS and PI3K.
    • (2002) J. Biol. Chem. , vol.277 , pp. 3117-3123
    • Kido, M.1    Shima, F.2    Satoh, T.3    Asato, T.4    Kariya, K.5    Kataoka, T.6
  • 31
    • 0033231561 scopus 로고    scopus 로고
    • The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1
    • Maesaki R., Ihara K., Shimizu T., Kuroda S., Kaibuchi K., Hakoshima T. The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1. Mol. Cell. 4:1999;793-803.
    • (1999) Mol. Cell , vol.4 , pp. 793-803
    • Maesaki, R.1    Ihara, K.2    Shimizu, T.3    Kuroda, S.4    Kaibuchi, K.5    Hakoshima, T.6
  • 33
    • 0033609335 scopus 로고    scopus 로고
    • Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK
    • Mott H.R., Owen D., Nietlispach D., Lowe P.N., Manser E., Lim L., Laue E.D. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature. 399:1999;384-388.
    • (1999) Nature , vol.399 , pp. 384-388
    • Mott, H.R.1    Owen, D.2    Nietlispach, D.3    Lowe, P.N.4    Manser, E.5    Lim, L.6    Laue, E.D.7
  • 34
    • 0034624753 scopus 로고    scopus 로고
    • Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein
    • Kim A.S., Kakalis L.T., Abdul-Manan M., Liu G.A., Rosen M.K. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature. 404:2000;151-158.
    • (2000) Nature , vol.404 , pp. 151-158
    • Kim, A.S.1    Kakalis, L.T.2    Abdul-Manan, M.3    Liu, G.A.4    Rosen, M.K.5
  • 35
    • 0034682705 scopus 로고    scopus 로고
    • Flipping the switch: The structural basis for signaling through the CRIB motif
    • Hoffman G.R., Cerione R.A. Flipping the switch: the structural basis for signaling through the CRIB motif. Cell. 102:2000;403-406.
    • (2000) Cell , vol.102 , pp. 403-406
    • Hoffman, G.R.1    Cerione, R.A.2
  • 36
    • 0034604338 scopus 로고    scopus 로고
    • Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch
    • The crystal structure of the complex between the regulatory and catalytic fragments of PAK1 shows how intramolecular inhibition of the kinase is achieved and suggests a mechanism of activation by binding Cdc42 or Rac. The inhibitory switch (IS) domain at one end blocks the catalytic site and at the other end forms a dimer contact with the IS domain of another PAK molecule. Supported by observations of WASP activation [32,34], a mechanism is suggested whereby Cdc42 or Rac binding leads to major structural rearrangements of the IS domain and thereby release of autoinhibition and dissociation of the dimer
    • Lei M., Lu W.G., Meng W.Y., Parrini M.C., Eck M.J., Mayer B.J., Harrison S.C. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 102:2000;387-397 The crystal structure of the complex between the regulatory and catalytic fragments of PAK1 shows how intramolecular inhibition of the kinase is achieved and suggests a mechanism of activation by binding Cdc42 or Rac. The inhibitory switch (IS) domain at one end blocks the catalytic site and at the other end forms a dimer contact with the IS domain of another PAK molecule. Supported by observations of WASP activation [32,34], a mechanism is suggested whereby Cdc42 or Rac binding leads to major structural rearrangements of the IS domain and thereby release of autoinhibition and dissociation of the dimer.
    • (2000) Cell , vol.102 , pp. 387-397
    • Lei, M.1    Lu, W.G.2    Meng, W.Y.3    Parrini, M.C.4    Eck, M.J.5    Mayer, B.J.6    Harrison, S.C.7
  • 38
    • 0033522118 scopus 로고    scopus 로고
    • Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: Implications for nuclear transport
    • Vetter I.R., Nowak C., Nishimoto T., Kuhlmann J., Wittinghofer A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature. 398:1999;39-46.
    • (1999) Nature , vol.398 , pp. 39-46
    • Vetter, I.R.1    Nowak, C.2    Nishimoto, T.3    Kuhlmann, J.4    Wittinghofer, A.5
  • 39
    • 0033612390 scopus 로고    scopus 로고
    • Structural view of the Ran-Importin beta interaction at 2.3 Å resolution
    • Vetter I.R., Arndt A., Kutay U., Gorlich D., Wittinghofer A. Structural view of the Ran-Importin beta interaction at 2.3 Å resolution. Cell. 97:1999;635-646.
    • (1999) Cell , vol.97 , pp. 635-646
    • Vetter, I.R.1    Arndt, A.2    Kutay, U.3    Gorlich, D.4    Wittinghofer, A.5
  • 40
    • 0035834388 scopus 로고    scopus 로고
    • Signal transduction - The guanine nucleotide-binding switch in three dimensions
    • Vetter I.R., Wittinghofer A. Signal transduction - the guanine nucleotide-binding switch in three dimensions. Science. 294:2001;1299-1304.
    • (2001) Science , vol.294 , pp. 1299-1304
    • Vetter, I.R.1    Wittinghofer, A.2
  • 41
    • 0033525215 scopus 로고    scopus 로고
    • Structural basis of Rab effector specificity: Crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A
    • Ostermeier C., Brunger A.T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell. 96:1999;363-374.
    • (1999) Cell , vol.96 , pp. 363-374
    • Ostermeier, C.1    Brunger, A.T.2
  • 42
    • 0034714098 scopus 로고    scopus 로고
    • The mammalian Rab family of small GTPases: Definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily
    • Pereira-Leal J.B., Seabra M.C. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 301:2000;1077-1087.
    • (2000) J. Mol. Biol. , vol.301 , pp. 1077-1087
    • Pereira-Leal, J.B.1    Seabra, M.C.2
  • 43
    • 0035659985 scopus 로고    scopus 로고
    • The many faces of Ras: Recognition of small GTP-binding proteins
    • Corbett K.D., Alber T. The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem. Sci. 26:2001;710-716.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 710-716
    • Corbett, K.D.1    Alber, T.2
  • 44
    • 0033532074 scopus 로고    scopus 로고
    • Thermodynamic and kinetic characterization of the interaction between the Ras binding domain of AF6 and members of the Ras subfamily
    • Linnemann T., Geyer M., Jaitner B.K., Block C., Kalbitzer H.R., Wittinghofer A., Herrmann C. Thermodynamic and kinetic characterization of the interaction between the Ras binding domain of AF6 and members of the Ras subfamily. J. Biol. Chem. 274:1999;13556-13562.
    • (1999) J. Biol. Chem. , vol.274 , pp. 13556-13562
    • Linnemann, T.1    Geyer, M.2    Jaitner, B.K.3    Block, C.4    Kalbitzer, H.R.5    Wittinghofer, A.6    Herrmann, C.7
  • 45
    • 0024600222 scopus 로고
    • A ras-related gene with transformation suppressor activity
    • Kitayama H., Sugimoto Y., Matsuzaki T., Ikawa Y., Noda M. A ras-related gene with transformation suppressor activity. Cell. 56:1989;77-84.
    • (1989) Cell , vol.56 , pp. 77-84
    • Kitayama, H.1    Sugimoto, Y.2    Matsuzaki, T.3    Ikawa, Y.4    Noda, M.5
  • 46
    • 0003187567 scopus 로고    scopus 로고
    • The atomic structure of protein-protein recognition sites
    • Lo C.L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285:1999;2177-2198.
    • (1999) J. Mol. Biol. , vol.285 , pp. 2177-2198
    • Lo, C.L.1    Chothia, C.2    Janin, J.3
  • 47
    • 0035968219 scopus 로고    scopus 로고
    • Thermodynamics of Ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry
    • An extensive study of the thermodynamics of interactions between different Ras proteins and effectors shows dramatically different contributions from enthalpy and entropy changes, despite the high similarities in the structures of the complexes
    • Rudolph M.G., Linnemann T., Grunewald P., Wittinghofer A., Vetter I.R., Herrmann C. Thermodynamics of Ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry. J. Biol. Chem. 276:2001;23914-23921 An extensive study of the thermodynamics of interactions between different Ras proteins and effectors shows dramatically different contributions from enthalpy and entropy changes, despite the high similarities in the structures of the complexes.
    • (2001) J. Biol. Chem. , vol.276 , pp. 23914-23921
    • Rudolph, M.G.1    Linnemann, T.2    Grunewald, P.3    Wittinghofer, A.4    Vetter, I.R.5    Herrmann, C.6
  • 48
    • 0029950722 scopus 로고    scopus 로고
    • A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation
    • White M.A., Vale T., Camonis J.H., Schaefer E., Wigler M.H. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271:1996;16439-16442.
    • (1996) J. Biol. Chem. , vol.271 , pp. 16439-16442
    • White, M.A.1    Vale, T.2    Camonis, J.H.3    Schaefer, E.4    Wigler, M.H.5
  • 52
    • 0033586721 scopus 로고    scopus 로고
    • Double-mutant analysis of the interaction of Ras with the Ras-binding domain of RGL
    • Shirouzu M., Hashimoto K., Kikuchi A., Yokoyama S. Double-mutant analysis of the interaction of Ras with the Ras-binding domain of RGL. Biochemistry. 38:1999;5103-5110.
    • (1999) Biochemistry , vol.38 , pp. 5103-5110
    • Shirouzu, M.1    Hashimoto, K.2    Kikuchi, A.3    Yokoyama, S.4
  • 53
    • 0032491205 scopus 로고    scopus 로고
    • Transient kinetic studies on the interaction of Ras and the Ras-binding domain of c-Raf-1 reveal rapid equilibration of the complex
    • Sydor J.R., Engelhard M., Wittinghofer A., Goody R.S., Herrmann C. Transient kinetic studies on the interaction of Ras and the Ras-binding domain of c-Raf-1 reveal rapid equilibration of the complex. Biochemistry. 37:1998;14292-14299.
    • (1998) Biochemistry , vol.37 , pp. 14292-14299
    • Sydor, J.R.1    Engelhard, M.2    Wittinghofer, A.3    Goody, R.S.4    Herrmann, C.5
  • 54
    • 0037040885 scopus 로고    scopus 로고
    • The activation of RalGDS can be achieved independently of its Ras binding domain - Implications of an activation mechanism in Ras effector specificity and signal distribution
    • Linnemann T., Kiel C., Herter P., Herrmann C. The activation of RalGDS can be achieved independently of its Ras binding domain - implications of an activation mechanism in Ras effector specificity and signal distribution. J. Biol. Chem. 277:2002;7831-7837.
    • (2002) J. Biol. Chem. , vol.277 , pp. 7831-7837
    • Linnemann, T.1    Kiel, C.2    Herter, P.3    Herrmann, C.4
  • 55
    • 0035942247 scopus 로고    scopus 로고
    • Dynamic properties of the Ras switch I region and its importance for binding to effectors
    • A combination of NMR, X-ray and biochemical studies demonstrates the importance of the relationship between conformational dynamics and the interaction between Ras and effectors. Thr35 in Ras is strictly conserved in all small GTPases - not even substitution by serine is tolerated - presumably because of its role in the control of switch dynamics
    • Spoerner M., Herrmann C., Vetter I.R., Kalbitzer H.R., Wittinghofer A. Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc. Natl. Acad. Sci. U.S.A. 98:2001;4944-4949 A combination of NMR, X-ray and biochemical studies demonstrates the importance of the relationship between conformational dynamics and the interaction between Ras and effectors. Thr35 in Ras is strictly conserved in all small GTPases - not even substitution by serine is tolerated - presumably because of its role in the control of switch dynamics.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 4944-4949
    • Spoerner, M.1    Herrmann, C.2    Vetter, I.R.3    Kalbitzer, H.R.4    Wittinghofer, A.5
  • 58
    • 0035850833 scopus 로고    scopus 로고
    • High-pressure NMR study of the complex of a GTPase Rap1A with its effector RalGDS - A conformational switch in RalGDS revealed from non-linear pressure shifts
    • Extending the investigations on different structural substates of the RBD of RalGDS using high-pressure NMR [57], this study shows nicely how conformational equilibria can be shifted and conformational changes be made more pronounced by interaction with a partner protein. These changes are suggested to be relevant to intramolecular transport of the signal
    • Inoue K., Maurer T., Yamada H., Herrmann C., Horn G., Kalbitzer H.R., Akasaka K. High-pressure NMR study of the complex of a GTPase Rap1A with its effector RalGDS - a conformational switch in RalGDS revealed from non-linear pressure shifts. FEBS Lett. 506:2001;180-184 Extending the investigations on different structural substates of the RBD of RalGDS using high-pressure NMR [57], this study shows nicely how conformational equilibria can be shifted and conformational changes be made more pronounced by interaction with a partner protein. These changes are suggested to be relevant to intramolecular transport of the signal.
    • (2001) FEBS Lett. , vol.506 , pp. 180-184
    • Inoue, K.1    Maurer, T.2    Yamada, H.3    Herrmann, C.4    Horn, G.5    Kalbitzer, H.R.6    Akasaka, K.7
  • 59
    • 0035979363 scopus 로고    scopus 로고
    • Low-lying excited states of proteins revealed from nonlinear pressure shifts in H-1 and N-15 NMR
    • For eight different proteins, NMR chemical shifts are analyzed at high pressures (up to 2000 bar). According to nonlinear pressure dependence, the co-existence of different protein conformers is indicated, the populations of which can be shifted by changing the pressure. The authors point to the importance of 'non-native' states of the protein, which have a low population and therefore are not visible under normal conditions. These states could be essential to function and their structure could be investigated at high pressure
    • Akasaka K., Li H. Low-lying excited states of proteins revealed from nonlinear pressure shifts in H-1 and N-15 NMR. Biochemistry. 40:2001;8665-8671 For eight different proteins, NMR chemical shifts are analyzed at high pressures (up to 2000 bar). According to nonlinear pressure dependence, the co-existence of different protein conformers is indicated, the populations of which can be shifted by changing the pressure. The authors point to the importance of 'non-native' states of the protein, which have a low population and therefore are not visible under normal conditions. These states could be essential to function and their structure could be investigated at high pressure.
    • (2001) Biochemistry , vol.40 , pp. 8665-8671
    • Akasaka, K.1    Li, H.2
  • 60
    • 0035856546 scopus 로고    scopus 로고
    • Two folded conformers of ubiquitin revealed by high-pressure NMR
    • Kitahara R., Yamada H., Akasaka K. Two folded conformers of ubiquitin revealed by high-pressure NMR. Biochemistry. 40:2001;13556-13563.
    • (2001) Biochemistry , vol.40 , pp. 13556-13563
    • Kitahara, R.1    Yamada, H.2    Akasaka, K.3
  • 61
    • 0029881007 scopus 로고    scopus 로고
    • Molmol - A program for display and analysis of macromolecular structures
    • Koradi R., Billeter M., Wuthrich K. Molmol - a program for display and analysis of macromolecular structures. J. Mol. Graph. 14:1996;51-55.
    • (1996) J. Mol. Graph , vol.14 , pp. 51-55
    • Koradi, R.1    Billeter, M.2    Wuthrich, K.3
  • 62
    • 0024079259 scopus 로고
    • BRAGI - A comprehensive protein modeling program system
    • Schomburg D., Reichelt J. BRAGI - a comprehensive protein modeling program system. J. Mol. Graph. 6:1988;161-165.
    • (1988) J. Mol. Graph , vol.6 , pp. 161-165
    • Schomburg, D.1    Reichelt, J.2
  • 63
    • 0037020243 scopus 로고    scopus 로고
    • Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase
    • Elad-Sfadia G., Haklai R., Ballan E., Gabius H.J., Kloog Y. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 277:2002;37169-37175.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37169-37175
    • Elad-Sfadia, G.1    Haklai, R.2    Ballan, E.3    Gabius, H.J.4    Kloog, Y.5
  • 64
    • 0037046799 scopus 로고    scopus 로고
    • Activation of phosphoinositide 3-kinase gamma by Ras
    • Suire S., Hawkins P., Stephens L. Activation of phosphoinositide 3-kinase gamma by Ras. Curr. Biol. 12:2002;1068-1075.
    • (2002) Curr. Biol. , vol.12 , pp. 1068-1075
    • Suire, S.1    Hawkins, P.2    Stephens, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.