-
1
-
-
79952749920
-
Variable sparsity kernel learning
-
J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. S. Nath, and S. Raman. Variable sparsity kernel learning. Journal of Machine Learning Research, 12:565-592, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 565-592
-
-
Aflalo, J.1
Ben-Tal, A.2
Bhattacharyya, C.3
Nath, J.S.4
Raman, S.5
-
2
-
-
33749254646
-
A DC-programming algorithm for kernel selection
-
A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A DC-programming algorithm for kernel selection. In the 23st ICML, pages 41-48, 2006.
-
(2006)
The 23st ICML
, pp. 41-48
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.A.3
Pontil, M.4
-
3
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
4
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
F. R. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems 21, pages 105-112, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 105-112
-
-
Bach, F.R.1
-
5
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In the 21st ICML, pages 41-48, 2004.
-
(2004)
The 21st ICML
, pp. 41-48
-
-
Bach, F.R.1
Lanckriet, G.2
Jordan, M.3
-
10
-
-
77956550918
-
Generalization bounds for learning kernels
-
C. Cortes, M. Mohri, and A. Rostamizadeh. Generalization bounds for learning kernels. In the 27th ICML, pages 247-254, 2010.
-
(2010)
The 27th ICML
, pp. 247-254
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
14
-
-
84858738634
-
p-norm multiple kernel learning
-
p-norm multiple kernel learning. In Advances in Neural Information Processing Systems 22, pages 997-1005, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Müller, K.-R.5
Zien, A.6
-
17
-
-
33746194045
-
Local Rademacher complexities and oracle inequalities in risk minimization
-
V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. The Annals of Statistics, 34:2593-2656, 2006.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 2593-2656
-
-
Koltchinskii, V.1
-
18
-
-
84860650487
-
Sparse recovery in large ensembles of kernel machines
-
V. Koltchinskii and M. Yuan. Sparse recovery in large ensembles of kernel machines. In COLT, pages 229-238, 2008.
-
(2008)
COLT
, pp. 229-238
-
-
Koltchinskii, V.1
Yuan, M.2
-
19
-
-
78650166948
-
Sparsity in multiple kernel learning
-
V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. The Annals of Statistics, 38(6):3660-3695, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.6
, pp. 3660-3695
-
-
Koltchinskii, V.1
Yuan, M.2
-
20
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Ghaoui, L.E.3
Bartlett, P.4
Jordan, M.5
-
21
-
-
73949083829
-
High-dimensional additive modeling
-
L. Meier, S. van de Geer, and P. Bühlmann. High-dimensional additive modeling. The Annals of Statistics, 37(6B):3779-3821, 2009.
-
(2009)
The Annals of Statistics
, vol.37
, Issue.6 B
, pp. 3779-3821
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
27
-
-
33746031418
-
Learning bounds for support vector machines with learned kernels
-
N. Srebro and S. Ben-David. Learning bounds for support vector machines with learned kernels. In COLT, pages 169-183, 2006.
-
(2006)
COLT
, pp. 169-183
-
-
Srebro, N.1
Ben-David, S.2
-
29
-
-
84898072914
-
Optimal rates for regularized least squares regression
-
I. Steinwart, D. Hush, and C. Scovel. Optimal rates for regularized least squares regression. In COLT, 2009.
-
(2009)
COLT
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
30
-
-
80053050350
-
Spicymkl: A fast algorithm for multiple kernel learning with thousands of kernels
-
T. Suzuki and R. Tomioka. Spicymkl: A fast algorithm for multiple kernel learning with thousands of kernels. Machine Learning, 85(1):77-108, 2011.
-
(2011)
Machine Learning
, vol.85
, Issue.1
, pp. 77-108
-
-
Suzuki, T.1
Tomioka, R.2
-
34
-
-
71149100224
-
More generality in efficient multiple kernel learning
-
M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In the 26th ICML, pages 1065-1072, 2009.
-
(2009)
The 26th ICML
, pp. 1065-1072
-
-
Varma, M.1
Babu, B.R.2
-
35
-
-
84898069211
-
Generalization bounds for learning the kernel
-
Y. Ying and C. Campbell. Generalization bounds for learning the kernel. In COLT, 2009.
-
(2009)
COLT
-
-
Ying, Y.1
Campbell, C.2
-
36
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of The Royal Statistical Society Series B, 68(1):49-67, 2006.
-
(2006)
Journal of the Royal Statistical Society Series B
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|