메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Non-parametric group orthogonal matching pursuit for Sparse Learning with Multiple Kernels

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85162475298     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (33)
  • 2
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of group lasso and multiple kernel learning
    • F. Bach. Consistency of group lasso and multiple kernel learning. JMLR, 9:1179-1225, 2008.
    • (2008) JMLR , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 3
    • 77956524818 scopus 로고    scopus 로고
    • High-dimensional non-linear variable selection through hierarchical kernel learning
    • F. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. In Technical report, HAL 00413473, 2009.
    • (2009) Technical Report, HAL 00413473
    • Bach, F.1
  • 5
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, 2004.
    • (2004) ICML
    • Bach, F.R.1    Lanckriet, G.R.G.2    Jordan, M.I.3
  • 6
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
    • (2002) JMLR , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelson, S.2
  • 7
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • January
    • A. Ben-Hur andW. S. Noble. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21, January 2005.
    • (2005) Bioinformatics , vol.21
    • Ben-Hur, A.1    Noble, W.S.2
  • 8
    • 77956550918 scopus 로고    scopus 로고
    • Generalization bounds for learning kernels
    • C. Cortes, M. Mohri, and Afshin Rostamizadeh. Generalization bounds for learning kernels. In ICML, 2010.
    • (2010) ICML
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 9
    • 80052365596 scopus 로고    scopus 로고
    • Orthogonal matching pursuit from noisy measurements: A new analysis
    • A. K. Fletcher and S. Rangan. Orthogonal matching pursuit from noisy measurements: A new analysis. In NIPS, 2009.
    • (2009) NIPS
    • Fletcher, A.K.1    Rangan, S.2
  • 12
    • 78650166948 scopus 로고    scopus 로고
    • Sparsity in multiple kernel learning
    • V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. The Annals of Statistics, 38(6):3660-3695, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.6 , pp. 3660-3695
    • Koltchinskii, V.1    Yuan, M.2
  • 15
    • 85162033754 scopus 로고    scopus 로고
    • Block variable selection in multivariate regression and high-dimensional causal inference
    • A. C. Lozano and V. Sindhwani. Block variable selection in multivariate regression and high-dimensional causal inference. In NIPS, 2010.
    • (2010) NIPS
    • Lozano, A.C.1    Sindhwani, V.2
  • 16
    • 80051715867 scopus 로고    scopus 로고
    • Group orthogonal matching pursuit for variable selection and prediction
    • A. C. Lozano, G. Swirszcz, and N. Abe. Group orthogonal matching pursuit for variable selection and prediction. In NIPS, 2009.
    • (2009) NIPS
    • Lozano, A.C.1    Swirszcz, G.2    Abe, N.3
  • 17
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • C. Michelli and M. Pontil. Learning the kernel function via regularization. JMLR, 6:1099-1125, 2005.
    • (2005) JMLR , vol.6 , pp. 1099-1125
    • Michelli, C.1    Pontil, M.2
  • 21
    • 84856109502 scopus 로고    scopus 로고
    • Minimax-optimal rates for sparse additive models over kernel classes via convex programming
    • UC Berkeley
    • G. Raskutti, M. Wainwrigt, and B. Yu. Minimax-optimal rates for sparse additive models over kernel classes via convex programming. In Technical Report 795, Statistics Department, UC Berkeley., 2010.
    • (2010) Technical Report 795, Statistics Department
    • Raskutti, G.1    Wainwrigt, M.2    Yu, B.3
  • 25
    • 85162562109 scopus 로고    scopus 로고
    • Sparse recovery with orthogonal matching pursuit under rip
    • Zhang T. Sparse recovery with orthogonal matching pursuit under rip. Computing Research Repository, 2010.
    • (2010) Computing Research Repository
    • Zhang, T.1
  • 27
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231-2242, 2004.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.1
  • 28
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning, 48:165-188, 2002.
    • (2002) Machine Learning , vol.48 , pp. 165-188
    • Vincent, P.1    Bengio, Y.2
  • 29
    • 77956547440 scopus 로고    scopus 로고
    • Simple and efficient multiple kernel learning by group lasso
    • Z. Xu, R. Jin, H. Yang, I. King, and M.R. Lyu. Simple and efficient multiple kernel learning by group lasso. In ICML, 2010.
    • (2010) ICML
    • Xu, Z.1    Jin, R.2    Yang, H.3    King, I.4    Lyu, M.R.5
  • 30
    • 34249004618 scopus 로고    scopus 로고
    • Dimension reduction and coefficient estimation in multivariate linear regression
    • Ming Yuan, Ali Ekici, Zhaosong Lu, and Renato Monteiro. Dimension reduction and coefficient estimation in multivariate linear regression. Journal Of The Royal Statistical Society Series B, 69(3):329-346, 2007.
    • (2007) Journal of the Royal Statistical Society Series B , vol.69 , Issue.3 , pp. 329-346
    • Yuan, M.1    Ekici, A.2    Lu, Z.3    Monteiro, R.4
  • 31
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • June
    • Tong Zhang. On the consistency of feature selection using greedy least squares regression. J. Mach. Learn. Res., 10, June 2009.
    • (2009) J. Mach. Learn. Res , vol.10
    • Zhang, T.1
  • 32
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zhou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, 67(2):301-320, 2005.
    • (2005) Journal of the Royal Statistical Society , vol.67 , Issue.2 , pp. 301-320
    • Zhou, H.1    Hastie, T.2
  • 33
    • 77956540615 scopus 로고    scopus 로고
    • Multiclass multiple kernel learning
    • A. Zien and Cheng S. Ong. Multiclass multiple kernel learning. ICML, 2007.
    • (2007) ICML
    • Zien, A.1    Ong, C.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.