-
2
-
-
46249088758
-
Consistency of group lasso and multiple kernel learning
-
F. Bach. Consistency of group lasso and multiple kernel learning. JMLR, 9:1179-1225, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1179-1225
-
-
Bach, F.1
-
3
-
-
77956524818
-
High-dimensional non-linear variable selection through hierarchical kernel learning
-
F. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. In Technical report, HAL 00413473, 2009.
-
(2009)
Technical Report, HAL 00413473
-
-
Bach, F.1
-
4
-
-
85162382857
-
Optimization with sparsity-inducing penalties
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. In Technical report, HAL 00413473, 2010.
-
(2010)
Technical Report, HAL 00413473
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
5
-
-
14344252374
-
Multiple kernel learning, conic duality, and the smo algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, 2004.
-
(2004)
ICML
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
6
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
-
(2002)
JMLR
, vol.3
, pp. 463-482
-
-
Bartlett, P.1
Mendelson, S.2
-
7
-
-
24744435534
-
Kernel methods for predicting protein-protein interactions
-
January
-
A. Ben-Hur andW. S. Noble. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21, January 2005.
-
(2005)
Bioinformatics
, vol.21
-
-
Ben-Hur, A.1
Noble, W.S.2
-
8
-
-
77956550918
-
Generalization bounds for learning kernels
-
C. Cortes, M. Mohri, and Afshin Rostamizadeh. Generalization bounds for learning kernels. In ICML, 2010.
-
(2010)
ICML
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
9
-
-
80052365596
-
Orthogonal matching pursuit from noisy measurements: A new analysis
-
A. K. Fletcher and S. Rangan. Orthogonal matching pursuit from noisy measurements: A new analysis. In NIPS, 2009.
-
(2009)
NIPS
-
-
Fletcher, A.K.1
Rangan, S.2
-
12
-
-
78650166948
-
Sparsity in multiple kernel learning
-
V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. The Annals of Statistics, 38(6):3660-3695, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.6
, pp. 3660-3695
-
-
Koltchinskii, V.1
Yuan, M.2
-
13
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
December
-
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27-72, December 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
14
-
-
8844263749
-
A statistical framework for genomic data fusion
-
November
-
G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical framework for genomic data fusion. Bioinformatics, 20, November 2004.
-
(2004)
Bioinformatics
, vol.20
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
15
-
-
85162033754
-
Block variable selection in multivariate regression and high-dimensional causal inference
-
A. C. Lozano and V. Sindhwani. Block variable selection in multivariate regression and high-dimensional causal inference. In NIPS, 2010.
-
(2010)
NIPS
-
-
Lozano, A.C.1
Sindhwani, V.2
-
16
-
-
80051715867
-
Group orthogonal matching pursuit for variable selection and prediction
-
A. C. Lozano, G. Swirszcz, and N. Abe. Group orthogonal matching pursuit for variable selection and prediction. In NIPS, 2009.
-
(2009)
NIPS
-
-
Lozano, A.C.1
Swirszcz, G.2
Abe, N.3
-
17
-
-
23244434257
-
Learning the kernel function via regularization
-
C. Michelli and M. Pontil. Learning the kernel function via regularization. JMLR, 6:1099-1125, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1099-1125
-
-
Michelli, C.1
Pontil, M.2
-
18
-
-
70350092487
-
Sparse additive models
-
H. Liu P. Ravikumar, J. Lafferty and L. Wasserman. Sparse additive models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) (JRSSB), 71 (5):1009-1030, 2009.
-
(2009)
Journal of the Royal Statistical Society: Series B (Statistical Methodology) (JRSSB)
, vol.71
, Issue.5
, pp. 1009-1030
-
-
Liu, H.1
Ravikumar, P.2
Lafferty, J.3
Wasserman, L.4
-
19
-
-
0036100116
-
Learning gene functional classifications from multiple data types
-
P. Pavlidis, J. Cai, J.Weston, andW.S. Noble. Learning gene functional classifications from multiple data types. Journal of Computational Biology, 9:401-411, 2002.
-
(2002)
Journal of Computational Biology
, vol.9
, pp. 401-411
-
-
Pavlidis, P.1
Cai, J.2
Weston, J.3
Noble, W.S.4
-
20
-
-
57249084590
-
SimpleMKL
-
A. Rakotomamonjy, F.Bach, S. Cano, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9:2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Cano, S.3
Grandvalet, Y.4
-
21
-
-
84856109502
-
Minimax-optimal rates for sparse additive models over kernel classes via convex programming
-
UC Berkeley
-
G. Raskutti, M. Wainwrigt, and B. Yu. Minimax-optimal rates for sparse additive models over kernel classes via convex programming. In Technical Report 795, Statistics Department, UC Berkeley., 2010.
-
(2010)
Technical Report 795, Statistics Department
-
-
Raskutti, G.1
Wainwrigt, M.2
Yu, B.3
-
24
-
-
33745776113
-
Large scale multiple kernel learning
-
December
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. J. Mach. Learn. Res., 7, December 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
25
-
-
85162562109
-
Sparse recovery with orthogonal matching pursuit under rip
-
Zhang T. Sparse recovery with orthogonal matching pursuit under rip. Computing Research Repository, 2010.
-
(2010)
Computing Research Repository
-
-
Zhang, T.1
-
27
-
-
5444237123
-
Greed is good: Algorithmic results for sparse approximation
-
J. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231-2242, 2004.
-
(2004)
IEEE Trans. Inform. Theory
, vol.50
, Issue.10
, pp. 2231-2242
-
-
Tropp, J.1
-
29
-
-
77956547440
-
Simple and efficient multiple kernel learning by group lasso
-
Z. Xu, R. Jin, H. Yang, I. King, and M.R. Lyu. Simple and efficient multiple kernel learning by group lasso. In ICML, 2010.
-
(2010)
ICML
-
-
Xu, Z.1
Jin, R.2
Yang, H.3
King, I.4
Lyu, M.R.5
-
30
-
-
34249004618
-
Dimension reduction and coefficient estimation in multivariate linear regression
-
Ming Yuan, Ali Ekici, Zhaosong Lu, and Renato Monteiro. Dimension reduction and coefficient estimation in multivariate linear regression. Journal Of The Royal Statistical Society Series B, 69(3):329-346, 2007.
-
(2007)
Journal of the Royal Statistical Society Series B
, vol.69
, Issue.3
, pp. 329-346
-
-
Yuan, M.1
Ekici, A.2
Lu, Z.3
Monteiro, R.4
-
31
-
-
64149088421
-
On the consistency of feature selection using greedy least squares regression
-
June
-
Tong Zhang. On the consistency of feature selection using greedy least squares regression. J. Mach. Learn. Res., 10, June 2009.
-
(2009)
J. Mach. Learn. Res
, vol.10
-
-
Zhang, T.1
-
32
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zhou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, 67(2):301-320, 2005.
-
(2005)
Journal of the Royal Statistical Society
, vol.67
, Issue.2
, pp. 301-320
-
-
Zhou, H.1
Hastie, T.2
-
33
-
-
77956540615
-
Multiclass multiple kernel learning
-
A. Zien and Cheng S. Ong. Multiclass multiple kernel learning. ICML, 2007.
-
(2007)
ICML
-
-
Zien, A.1
Ong, C.S.2
|