메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Shallow vs. deep sum-product networks

Author keywords

[No Author keywords available]

Indexed keywords

HIDDEN LAYERS; HIDDEN UNITS; LAYER ARCHITECTURES; NETWORK COMPUTATIONS; NEURAL-NETWORKS; POWER; PRODUCT NETWORKS; RECENT RESEARCHES; SUM PRODUCT; WEIGHTED SUM;

EID: 85162314283     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (328)

References (38)
  • 2
    • 84947904777 scopus 로고    scopus 로고
    • Circuit complexity before the dawn of the new millennium
    • 16th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Springer Verlag
    • Allender, E. (1996). Circuit complexity before the dawn of the new millennium. In 16th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pages 1-18. Lecture Notes in Computer Science 1180, Springer Verlag.
    • (1996) Lecture Notes in Computer Science , vol.1180 , pp. 1-18
    • Allender, E.1
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Also published as a book. Now Publishers, 2009
    • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1-127. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors. MIT Press
    • Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press.
    • (2007) Large Scale Kernel Machines
    • Bengio, Y.1    Lecun, Y.2
  • 5
    • 77954662106 scopus 로고    scopus 로고
    • The curse of highly variable functions for local kernel machines
    • MIT Press, Cambridge, MA
    • Bengio, Y., Delalleau, O., and Le Roux, N. (2006). The curse of highly variable functions for local kernel machines. In NIPS'05, pages 107-114. MIT Press, Cambridge, MA.
    • (2006) NIPS'05 , pp. 107-114
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 6
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • MIT Press
    • Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of deep networks. In NIPS 19, pages 153-160. MIT Press.
    • (2007) NIPS , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 7
    • 78649265006 scopus 로고    scopus 로고
    • Decision trees do not generalize to new variations
    • Bengio, Y., Delalleau, O., and Simard, C. (2010). Decision trees do not generalize to new variations. Computational Intelligence, 26(4), 449-467.
    • (2010) Computational Intelligence , vol.26 , Issue.4 , pp. 449-467
    • Bengio, Y.1    Delalleau, O.2    Simard, C.3
  • 8
    • 79953693034 scopus 로고    scopus 로고
    • Poly-logarithmic independence fools bounded-depth boolean circuits
    • Braverman, M. (2011). Poly-logarithmic independence fools bounded-depth boolean circuits. Communications of the ACM, 54(4), 108-115.
    • (2011) Communications of the ACM , vol.54 , Issue.4 , pp. 108-115
    • Braverman, M.1
  • 9
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML 2008, pages 160-167.
    • (2008) ICML 2008 , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 12
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • Håstad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1, 113-129.
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Håstad, J.1    Goldmann, M.2
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 16
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • ACM
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. In ICML'07, pages 473-480. ACM.
    • (2007) ICML'07 , pp. 473-480
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 17
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • MIT Press, Cambridge, MA
    • Lee, H., Ekanadham, C., and Ng, A. (2008). Sparse deep belief net model for visual area V2. In NIPS'07, pages 873-880. MIT Press, Cambridge, MA.
    • (2008) NIPS'07 , pp. 873-880
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 18
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Montreal (Qc), Canada
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009a). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML 2009. Montreal (Qc), Canada.
    • (2009) ICML 2009
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 19
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Lee, H., Pham, P., Largman, Y., and Ng, A. (2009b). Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS'09, pages 1096-1104.
    • (2009) NIPS'09 , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.4
  • 20
    • 73249145043 scopus 로고    scopus 로고
    • Ph.D. thesis, Department of Computer Science, University of Alberta
    • Levner, I. (2008). Data Driven Object Segmentation. Ph.D. thesis, Department of Computer Science, University of Alberta.
    • (2008) Data Driven Object Segmentation
    • Levner, I.1
  • 21
    • 84858779990 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distributed language model. In NIPS'08, pages 1081-1088.
    • (2009) NIPS'08 , pp. 1081-1088
    • Mnih, A.1    Hinton, G.E.2
  • 22
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • Mobahi, H., Collobert, R., and Weston, J. (2009). Deep learning from temporal coherence in video. In ICML'2009, pages 737-744.
    • (2009) ICML'2009 , pp. 737-744
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 23
    • 0037901061 scopus 로고
    • Computational complexity of neural networks: A survey
    • Orponen, P. (1994). Computational complexity of neural networks: a survey. Nordic Journal of Computing, 1(1), 94-110.
    • (1994) Nordic Journal of Computing , vol.1 , Issue.1 , pp. 94-110
    • Orponen, P.1
  • 24
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of markov random field
    • Cambridge, MA. MIT Press
    • Osindero, S. and Hinton, G. E. (2008). Modeling image patches with a directed hierarchy of markov random field. In NIPS'07, pages 1121-1128, Cambridge, MA. MIT Press.
    • (2008) NIPS'07 , pp. 1121-1128
    • Osindero, S.1    Hinton, G.E.2
  • 25
    • 80053162579 scopus 로고    scopus 로고
    • Sum-product networks: A new deep architecture
    • Barcelona, Spain
    • Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In UAI'2011, Barcelona, Spain.
    • (2011) UAI'2011
    • Poon, H.1    Domingos, P.2
  • 26
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • Ranzato, M. and Szummer, M. (2008). Semi-supervised learning of compact document representations with deep networks. In ICML.
    • (2008) ICML
    • Ranzato, M.1    Szummer, M.2
  • 27
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • MIT Press
    • Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In NIPS'06, pages 1137-1144. MIT Press.
    • (2007) NIPS'06 , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 28
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Cambridge, MA. MIT Press
    • Ranzato, M., Boureau, Y.-L., and LeCun, Y. (2008). Sparse feature learning for deep belief networks. In NIPS'07, pages 1185-1192, Cambridge, MA. MIT Press.
    • (2008) NIPS'07 , pp. 1185-1192
    • Ranzato, M.1    Boureau, Y.-L.2    Lecun, Y.3
  • 30
    • 34547983260 scopus 로고    scopus 로고
    • Restricted Boltzmann machines for collaborative filtering
    • New York, NY, USA
    • Salakhutdinov, R., Mnih, A., and Hinton, G. E. (2007). Restricted Boltzmann machines for collaborative filtering. In ICML 2007, pages 791-798, New York, NY, USA.
    • (2007) ICML 2007 , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.E.3
  • 32
    • 84860647003 scopus 로고    scopus 로고
    • Learning continuous phrase representations and syntactic parsing with recursive neural networks
    • Socher, R., Lin, C., Ng, A. Y., and Manning, C. (2011). Learning continuous phrase representations and syntactic parsing with recursive neural networks. In ICML'2011.
    • (2011) ICML'2011
    • Socher, R.1    Lin, C.2    Ng, A.Y.3    Manning, C.4
  • 33
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted Boltzmann machines for modeling motion style
    • Taylor, G. and Hinton, G. (2009). Factored conditional restricted Boltzmann machines for modeling motion style. In ICML 2009, pages 1025-1032.
    • (2009) ICML 2009 , pp. 1025-1032
    • Taylor, G.1    Hinton, G.2
  • 34
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • MIT Press, Cambridge, MA
    • Taylor, G., Hinton, G. E., and Roweis, S. (2007). Modeling human motion using binary latent variables. In NIPS'06, pages 1345-1352. MIT Press, Cambridge, MA.
    • (2007) NIPS'06 , pp. 1345-1352
    • Taylor, G.1    Hinton, G.E.2    Roweis, S.3
  • 36
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • New York, NY, USA
    • Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding. In ICML 2008, pages 1168-1175, New York, NY, USA.
    • (2008) ICML 2008 , pp. 1168-1175
    • Weston, J.1    Ratle, F.2    Collobert, R.3
  • 37
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinction between learning algorithms
    • Wolpert, D. H. (1996). The lack of a priori distinction between learning algorithms. Neural Computation, 8(7), 1341-1390.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.