메뉴 건너뛰기




Volumn 10, Issue , 2013, Pages 341-377

Computational mechanobiology in cartilage and bone tissue engineering: From cell phenotype to tissue structure

Author keywords

Focal Adhesion; Fracture Healing; Representative Volume Element; Tissue Differentiation; Tissue Engineering

Indexed keywords


EID: 85085318019     PISSN: 18682006     EISSN: 18682014     Source Type: Book Series    
DOI: 10.1007/8415_2012_131     Document Type: Chapter
Times cited : (4)

References (117)
  • 1
    • 0034108372 scopus 로고    scopus 로고
    • A fuzzy logic model of fracture healing
    • Ament, C., Hofer, E.P.: A fuzzy logic model of fracture healing. J. Biomechanics 33(8), 961–968 (2000). doi:10.1016/S0021-9290(00)00049-X. http://www.sciencedirect.com/science/article/pii/S002192900000049X
    • (2000) J. Biomechanics , vol.33 , Issue.8 , pp. 961-968
    • Ament, C.1    Hofer, E.P.2
  • 2
    • 34547096993 scopus 로고    scopus 로고
    • The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets—relevance for tissue engineering
    • Balguid, A., Rubbens, M.P., Mol, A., Bank, R.A., Bogers, A.J.J.C, van Kats, J.P., de Mol, B.A.J.M., Baaijens, F.P.T., Bouten, C.V.C.: The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets—relevance for tissue engineering. Tissue Eng. 13(7), 1501–1511 (2007). doi:10.1089/ten.2006.0279. http://dx.doi.org/10.1089/ten.2006.0279
    • (2007) Tissue Eng , vol.13 , Issue.7 , pp. 1501-1511
    • Balguid, A.1    Rubbens, M.P.2    Mol, A.3    Bank, R.A.4    Bogers, A.J.J.C.5    van Kats, J.P.6    de Mol, B.A.J.M.7    Baaijens, F.P.T.8    Bouten, C.V.C.9
  • 3
    • 0031148830 scopus 로고    scopus 로고
    • An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance
    • Barocas, V.H., Tranquillo, R.T.: An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119(2), 137–145 (1997)
    • (1997) J. Biomech. Eng. , vol.119 , Issue.2 , pp. 137-145
    • Barocas, V.H.1    Tranquillo, R.T.2
  • 4
    • 22044439283 scopus 로고    scopus 로고
    • Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells
    • Batra, N.N., Li, Y.J., Yellowley, C.E., You, L., Malone, A.M., Kim, C.H., Jacobs, C.R.: Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J. Biomech. 38(9), 1909–1917 (2005). doi:10.1016/j.jbiomech.2004.08.009. http://dx.doi.org/10.1016/j.jbiomech.2004.08.009
    • (2005) J. Biomech. , vol.38 , Issue.9 , pp. 1909-1917
    • Batra, N.N.1    Li, Y.J.2    Yellowley, C.E.3    You, L.4    Malone, A.M.5    Kim, C.H.6    Jacobs, C.R.7
  • 5
    • 77953860250 scopus 로고    scopus 로고
    • Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes
    • Bian, L., Fong, J.V., Lima, E.G., Stoker, A.M., Ateshian, G.A., Cook, J.L., Hung, C.T.: Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng. Part A 16(5), 1781–1790 (2010). doi:10.1089/ten.TEA.2009.0482. http://dx.doi.org/10.1089/ten.TEA.2009.0482
    • (2010) Tissue Eng. Part A , vol.16 , Issue.5 , pp. 1781-1790
    • Bian, L.1    Fong, J.V.2    Lima, E.G.3    Stoker, A.M.4    Ateshian, G.A.5    Cook, J.L.6    Hung, C.T.7
  • 6
    • 0042925433 scopus 로고    scopus 로고
    • Cell organization in soft media due to active mechanosensing
    • Bischofs, I.B., Schwarz, U.S.: Cell organization in soft media due to active mechanosensing. Proc. Natl Acad. Sci. U S A 100(16), 9274–9279 (2003). http://www.pnas.org/content/100/16/9274.abstract
    • (2003) Proc. Natl Acad. Sci. U S A , vol.100 , Issue.16 , pp. 9274-9279
    • Bischofs, I.B.1    Schwarz, U.S.2
  • 8
    • 35548978457 scopus 로고    scopus 로고
    • The influence of expansion rates on mandibular distraction osteogenesis: A computational analysis
    • Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35(11), 1940–1960 (2007). doi:10.1007/s10439-007-9367-x. http://dx.doi.org/10.1007/s10439-007-9367-x
    • (2007) Ann. Biomed. Eng. , vol.35 , Issue.11 , pp. 1940-1960
    • Boccaccio, A.1    Pappalettere, C.2    Kelly, D.J.3
  • 9
    • 48049093274 scopus 로고    scopus 로고
    • Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: A finite element study
    • Boccaccio, A., Lamberti, L., Pappalettere, C., Cozzani, M., Siciliani, G.: Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: a finite element study. Am. J. Orthod. Dentofac. Orthop. 134(2), 260–269 (2008). doi:10.1016/j.ajodo.2006.09.066. http://dx.doi.org/10.1016/j.ajodo.2006.09.066
    • (2008) Am. J. Orthod. Dentofac. Orthop. , vol.134 , Issue.2 , pp. 260-269
    • Boccaccio, A.1    Lamberti, L.2    Pappalettere, C.3    Cozzani, M.4    Siciliani, G.5
  • 10
    • 79952483103 scopus 로고    scopus 로고
    • Finite element method (Fem), mechanobiology and biomimetic scaffolds in bone tissue engineering
    • Boccaccio, A., Ballini, A., Pappalettere, C., Tullo, D., Cantore, S., Desiate, A.: Finite element method (fem), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 7(1), 112–132 (2011)
    • (2011) Int. J. Biol. Sci. , vol.7 , Issue.1 , pp. 112-132
    • Boccaccio, A.1    Ballini, A.2    Pappalettere, C.3    Tullo, D.4    Cantore, S.5    Desiate, A.6
  • 11
    • 79251535629 scopus 로고    scopus 로고
    • A mechano-regulation model of fracture repair in vertebral bodies
    • Boccaccio, A., Kelly, D.J., Pappalettere, C.: A mechano-regulation model of fracture repair in vertebral bodies. J. Orthop. Res. 29(3), 433–443 (2011). doi:10.1002/jor.21231. http://dx.doi.org/10.1002/jor.21231
    • (2011) J. Orthop. Res. , vol.29 , Issue.3 , pp. 433-443
    • Boccaccio, A.1    Kelly, D.J.2    Pappalettere, C.3
  • 12
    • 84881224287 scopus 로고    scopus 로고
    • Could substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing?
    • Farmington, Pennsylvania, USA, June
    • Burke, D., Kelly, D.: Could substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing? In: Proceedings of the ASME 2011 Summer Bioengineering Conference, Farmington, Pennsylvania, USA, 22–25 June 2011
    • (2011) Proceedings of the ASME 2011 Summer Bioengineering Conference , pp. 22-25
    • Burke, D.1    Kelly, D.2
  • 13
    • 0034520839 scopus 로고    scopus 로고
    • Functional tissue engineering: The role of biomechanics
    • Butler, D.L., Goldstein, S.A., Guilak, F.: Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122(6), 570–575 (2000)
    • (2000) J. Biomech. Eng. , vol.122 , Issue.6 , pp. 570-575
    • Butler, D.L.1    Goldstein, S.A.2    Guilak, F.3
  • 14
    • 35348975035 scopus 로고    scopus 로고
    • Simulation of tissue differentiation in a scaffold as a function of porosity, young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering
    • Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36), 5544– 5554 (2007). doi:10.1016/j.biomaterials.2007.09.003. http://dx.doi.org/10.1016/j.biomaterials. 2007.09.003
    • (2007) Biomaterials , vol.28 , Issue.36 , pp. 5544-5554
    • Byrne, D.P.1    Lacroix, D.2    Planell, J.A.3    Kelly, D.J.4    Prendergast, P.J.5
  • 15
    • 0024076225 scopus 로고
    • Correlations between mechanical stress history and tissue differentiation in initial fracture healing
    • Carter, D.R., Blenman, P.R., Beauprcé, G.S.: Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J. Orthop. Res. 6(5), 736–748 (1988). doi:10.1002/jor.1100060517. http://dx.doi.org/10.1002/jor.1100060517
    • (1988) J. Orthop. Res. , vol.6 , Issue.5 , pp. 736-748
    • Carter, D.R.1    Blenman, P.R.2    Beauprcé, G.S.3
  • 16
    • 0026343515 scopus 로고
    • Musculoskeletal ontogeny, phylogeny, and functional adaptation
    • (proceedings of the NASA Symposium on the Influence of Gravity and Activity on Muscle and Bone)
    • Carter, D.R., Wong, M., Orr, T.E.: Musculoskeletal ontogeny, phylogeny, and functional adaptation. J. Biomech. 24(Suppl 1), 3–16 (1991). doi:10.1016/0021-9290(91)90373-U. http://www.sciencedirect.com/science/article/pii/002192909190373U (proceedings of the NASA Symposium on the Influence of Gravity and Activity on Muscle and Bone)
    • (1991) J. Biomech. , vol.24 , pp. 3-16
    • Carter, D.R.1    Wong, M.2    Orr, T.E.3
  • 18
    • 77956341215 scopus 로고    scopus 로고
    • A multiscale modeling approach to scaffold design and property prediction
    • Chan, K.S., Liang, W., Francis, W.L., Nicolella, D.P.: A multiscale modeling approach to scaffold design and property prediction. J. Mech. Behav. Biomed. Mater. 3(8), 584–593 (2010). doi:10.1016/j.jmbbm.2010.07.006. http://dx.doi.org/10.1016/j.jmbbm.2010.07.006
    • (2010) J. Mech. Behav. Biomed. Mater. , vol.3 , Issue.8 , pp. 584-593
    • Chan, K.S.1    Liang, W.2    Francis, W.L.3    Nicolella, D.P.4
  • 19
    • 57349105663 scopus 로고    scopus 로고
    • A mechanobiological model for tissue differentiation that includes angiogenesis: A lattice-based modeling approach
    • Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37(1), 129– 145 (2009). doi:10.1007/s10439-008-9594-9. http://dx.doi.org/10.1007/s10439-008-9594-9
    • (2009) Ann. Biomed. Eng. , vol.37 , Issue.1 , pp. 129-145
    • Checa, S.1    Prendergast, P.J.2
  • 20
    • 77549086659 scopus 로고    scopus 로고
    • Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: A mechano-biological model using a lattice approach to simulate cell activity
    • Checa, S., Prendergast, P.J.: Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J. Biomech. 43(5), 961–968 (2010). doi:10.1016/j.jbiomech.2009.10.044. http://dx.doi.org/10.1016/j.jbiomech.2009.10.044
    • (2010) J. Biomech. , vol.43 , Issue.5 , pp. 961-968
    • Checa, S.1    Prendergast, P.J.2
  • 21
    • 84861098159 scopus 로고    scopus 로고
    • Bone morphology allows estimation of loading history in a murine model of bone adaptation
    • Christen, P., van Rietbergen, B., Lambers, F.M., Müller, R., Ito, K.: Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomech. Model Mechanobiol. 10(5), 663–670 (2011). doi:10.1007/s10237-011-0327-x. http://dx.doi.org/10.1007/s10237-011-0327-x
    • (2011) Biomech. Model Mechanobiol. , vol.10 , Issue.5 , pp. 663-670
    • Christen, P.1    van Rietbergen, B.2    Lambers, F.M.3    Müller, R.4    Ito, K.5
  • 22
    • 0033104459 scopus 로고    scopus 로고
    • Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing
    • Claes, L.E., Heigele, C.A.: Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3), 255–266 (1999)
    • (1999) J. Biomech. , vol.32 , Issue.3 , pp. 255-266
    • Claes, L.E.1    Heigele, C.A.2
  • 25
  • 26
    • 0043270436 scopus 로고    scopus 로고
    • Effects of the local mechanical environment on vertebrate tissue differentiation during repair: Does repair recapitulate development?
    • Pt 14
    • Cullinane, D.M., Salisbury, K.T., Alkhiary, Y., Eisenberg, S., Gerstenfeld, L., Einhorn, T.A.: Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development? J. Exp. Biol. 206(Pt 14), 2459–2471 (2003)
    • (2003) J. Exp. Biol. , vol.206 , pp. 2459-2471
    • Cullinane, D.M.1    Salisbury, K.T.2    Alkhiary, Y.3    Eisenberg, S.4    Gerstenfeld, L.5    Einhorn, T.A.6
  • 27
    • 35448972822 scopus 로고    scopus 로고
    • A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation
    • Deshpande, V.S., McMeeking, R.M., Evans, A.G.: A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. Royal Soc. A Math. Phys. Eng. Sci. 463(2079), 787–815 (2007) http://rspa.royalsocietypublishing.org/content/463/2079/787.abstract
    • (2007) Proc. Royal Soc. a Math. Phys. Eng. Sci. , vol.463 , Issue.2079 , pp. 787-815
    • Deshpande, V.S.1    McMeeking, R.M.2    Evans, A.G.3
  • 28
    • 40849139751 scopus 로고    scopus 로고
    • A bio-mechanical model for coupling cell contractility with focal adhesion formation
    • Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56(4), 1484–1510 (2008). doi:10.1016/j.jmps.2007.08.006. http://www.sciencedirect.com/science/article/B6TXB-4PJM9VR-1/2/e406bd345af9e0173c1b96ef7698463f
    • (2008) J. Mech. Phys. Solids , vol.56 , Issue.4 , pp. 1484-1510
    • Deshpande, V.S.1    Mrksich, M.2    McMeeking, R.M.3    Evans, A.G.4
  • 29
    • 27944497333 scopus 로고    scopus 로고
    • Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate
    • Discher, D.E., Janmey, P., Wang, Y.l.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005). http://www.sciencemag.org/content/310/5751/1139.abstract
    • (2005) Science , vol.310 , Issue.5751 , pp. 1139-1143
    • Discher, D.E.1    Janmey, P.2
  • 30
    • 33745396475 scopus 로고    scopus 로고
    • Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures
    • Engelmayr, G.C., Papworth, G.D., Watkins, S.C., Mayer, J.E., Sacks, M.S.: Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39(10), 1819–1831 (2006). doi:10.1016/j.jbiomech.2005.05.020. http://dx.doi.org/10.1016/j.jbiomech.2005.05.020
    • (2006) J. Biomech. , vol.39 , Issue.10 , pp. 1819-1831
    • Engelmayr, G.C.1    Papworth, G.D.2    Watkins, S.C.3    Mayer, J.E.4    Sacks, M.S.5
  • 31
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006). http://linkinghub.elsevier.com/retrieve/pii/S0092867406009615
    • (2006) Cell , vol.126 , Issue.4 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 33
    • 78549280473 scopus 로고    scopus 로고
    • European society of biomechanics s.M. perren award 2010: An adaptation mechanism for fibrous tissue to sustained shortening
    • Foolen, J., van Donkelaar, C.C., Soekhradj-Soechit, S., Ito, K.: European society of biomechanics s.m. perren award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J. Biomech. 43(16), 3168–3176 (2010). doi:10.1016/j.jbiomech.2010.07.040. http://www.sciencedirect.com/science/article/B6T82-50XJC0S-1/2/47b646146d92bb178404711cc88ec093
    • (2010) J. Biomech. , vol.43 , Issue.16 , pp. 3168-3176
    • Foolen, J.1    van Donkelaar, C.C.2    Soekhradj-Soechit, S.3    Ito, K.4
  • 34
    • 34247143396 scopus 로고    scopus 로고
    • Computational simulation of fracture healing: Influence of interfragmentary movement on the callus growth
    • García-Aznar, J.M., Kuiper, J.H., Gómez-Benito, M.J., Doblaré, M., Richardson, J.B.: Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40(7), 1467–1476 (2007). doi:10.1016/j.jbiomech.2006.06.013. http://dx.doi.org/10.1016/j.jbiomech.2006.06.013
    • (2007) J. Biomech. , vol.40 , Issue.7 , pp. 1467-1476
    • García-Aznar, J.M.1    Kuiper, J.H.2    Gómez-Benito, M.J.3    Doblaré, M.4    Richardson, J.B.5
  • 35
    • 4043082818 scopus 로고    scopus 로고
    • Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants
    • Geris, L., Oosterwyck, H.V., Sloten, J.V., Duyck, J., Naert, I.: Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants. Comput. Methods Biomech. Biomed. Eng. 6(5–6), 277–288 (2003). doi:10.1080/10255840310001634412. http://dx.doi.org/10.1080/10255840310001634412
    • (2003) Comput. Methods Biomech. Biomed. Eng. , vol.6 , Issue.5-6 , pp. 277-288
    • Geris, L.1    Oosterwyck, H.V.2    Sloten, J.V.3    Duyck, J.4    Naert, I.5
  • 36
    • 1842418824 scopus 로고    scopus 로고
    • Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber
    • Geris, L., Andreykiv, A., Oosterwyck, H.V., Sloten, J.V., van Keulen, F., Duyck, J., Naert, I.: Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber. J. Biomech. 37(5), 763–769 (2004). doi:10.1016/j.jbiomech.2003.09.026. http://www.sciencedirect.com/science/article/B6T82-4B0PPFB-2/2/2a52f7f66103bdeb80efe3cda53aed30
    • (2004) J. Biomech. , vol.37 , Issue.5 , pp. 763-769
    • Geris, L.1    Andreykiv, A.2    Oosterwyck, H.V.3    Sloten, J.V.4    van Keulen, F.5    Duyck, J.6    Naert, I.7
  • 37
    • 39149101807 scopus 로고    scopus 로고
    • Angiogenesis in bone fracture healing: A bioregulatory model
    • Geris, L., Gerisch, A., Sloten, J.V., Weiner, R., Oosterwyck, H.V.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008). doi:10.1016/j.jtbi.2007.11.008. http://dx.doi.org/10.1016/j.jtbi.2007.11.008
    • (2008) J. Theor. Biol. , vol.251 , Issue.1 , pp. 137-158
    • Geris, L.1    Gerisch, A.2    Sloten, J.V.3    Weiner, R.4    Oosterwyck, H.V.5
  • 38
    • 77953529579 scopus 로고    scopus 로고
    • In silico design of treatment strategies in wound healing and bone fracture healing
    • Geris, L., Schugart, R., Van Oosterwyck, H.: In silico design of treatment strategies in wound healing and bone fracture healing. Philos. Trans. A Math. Phys. Eng. Sci. 368(1920), 2683–2706 (2010). doi:10.1098/rsta.2010.0056. http://dx.doi.org/10.1098/rsta.2010.0056
    • (2010) Philos. Trans. a Math. Phys. Eng. Sci. , vol.368 , Issue.1920 , pp. 2683-2706
    • Geris, L.1    Schugart, R.2    van Oosterwyck, H.3
  • 39
    • 0027625496 scopus 로고
    • Cellular shape and pressure may mediate mechanical control of tissue composition in tendons
    • Giori, N.J., Beaupr, G.S., Carter, D.R.: Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J. Orthop. Res. 11(4), 581–591 (1993). doi:10.1002/jor.1100110413. http://dx.doi.org/10.1002/jor.1100110413
    • (1993) J. Orthop. Res. , vol.11 , Issue.4 , pp. 581-591
    • Giori, N.J.1    Beaupr, G.S.2    Carter, D.R.3
  • 40
    • 0033811124 scopus 로고    scopus 로고
    • The mechanical environment of the chondrocyte: A biphasic finite element model of cell-matrix interactions in articular cartilage
    • Guilak, F., Mow, V.C.: The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33(12), 1663–1673 (2000)
    • (2000) J. Biomech. , vol.33 , Issue.12 , pp. 1663-1673
    • Guilak, F.1    Mow, V.C.2
  • 41
    • 65849087318 scopus 로고    scopus 로고
    • Strain-damage coupled algorithm for cancellous bone mechano-regulation with spatial function influence
    • Hambli, R., Soulat, D., Gasser, A., Benhamou, C.L.: Strain-damage coupled algorithm for cancellous bone mechano-regulation with spatial function influence. Comput. Methods Appl. Mech. Eng. 198(33–36), 2673–2682 (2009). doi:10.1016/j.cma.2009.03.014. http://www.sciencedirect.com/science/article/pii/S004578250900139X
    • (2009) Comput. Methods Appl. Mech. Eng. , vol.198 , Issue.33-36 , pp. 2673-2682
    • Hambli, R.1    Soulat, D.2    Gasser, A.3    Benhamou, C.L.4
  • 42
    • 79551567658 scopus 로고    scopus 로고
    • Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation
    • Hambli, R., Katerchi, H., Benhamou, C.L.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model Mechanobiol. 10(1), 133–145 (2011). doi:10.1007/s10237-010-0222-x. http://dx.doi.org/10.1007/s10237-010-0222-x
    • (2011) Biomech. Model Mechanobiol. , vol.10 , Issue.1 , pp. 133-145
    • Hambli, R.1    Katerchi, H.2    Benhamou, C.L.3
  • 43
    • 71249083983 scopus 로고    scopus 로고
    • Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation
    • Hayward, L., Morgan, E.: Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech. Model Mechanobiol. 2(2), 109–126 (2009). doi:10.1007/s10237-009-0148-3. http://dx.doi.org/10.1007/s10237-009-0148-3
    • (2009) Biomech. Model Mechanobiol. , vol.2 , Issue.2 , pp. 109-126
    • Hayward, L.1    Morgan, E.2
  • 44
    • 79955001095 scopus 로고    scopus 로고
    • High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage
    • Hoenig, E., Winkler, T., Mielke, G., Paetzold, H., Schuettler, D., Goepfert, C., Machens, H.G., Morlock, M.M., Schilling, A.F.: High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng. Part A 17(9–10), 1401–1411 (2011). doi:10.1089/ten.tea.2010.0395. http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2010.0395, http://www.liebertonline.com/doi/pdf/10.1089/ten.tea.2010.0395
    • (2011) Tissue Eng. Part A , vol.17 , Issue.9-10 , pp. 1401-1411
    • Hoenig, E.1    Winkler, T.2    Mielke, G.3    Paetzold, H.4    Schuettler, D.5    Goepfert, C.6    Machens, H.G.7    Morlock, M.M.8    Schilling, A.F.9
  • 45
    • 77950647523 scopus 로고    scopus 로고
    • Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel
    • Huang, A., Farrell, M., Kim, M., Mauck, R.: Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur. Cells Mater. 19, 72–85 (2010)
    • (2010) Eur. Cells Mater. , vol.19 , pp. 72-85
    • Huang, A.1    Farrell, M.2    Kim, M.3    Mauck, R.4
  • 46
    • 0031453402 scopus 로고    scopus 로고
    • A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation
    • Huiskes, R., Driel, W.D.V., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. Mater. Med. 8(12), 785–788 (1997)
    • (1997) J. Mater. Sci. Mater. Med. , vol.8 , Issue.12 , pp. 785-788
    • Huiskes, R.1    Driel, W.D.V.2    Prendergast, P.J.3    Søballe, K.4
  • 47
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543 (2000)
    • (2000) Biomaterials , vol.21 , Issue.24 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 48
    • 0030899760 scopus 로고    scopus 로고
    • Tensegrity: The architectural basis of cellular mechanotransduction
    • Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59(1), 575–599 (1997). doi:10.1146/annurev.physiol.59.1.575. http://www. annualreviews.org/doi/abs/10.1146/annurev.physiol.59.1.575, http://www.annualreviews. org/doi/pdf/10.1146/annurev.physiol.59.1.575
    • (1997) Annu. Rev. Physiol. , vol.59 , Issue.1 , pp. 575-599
    • Ingber, D.E.1
  • 49
    • 33744462845 scopus 로고    scopus 로고
    • Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results
    • Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J. Orthop. Res. 24(5), 898–907 (2006). doi:10.1002/jor.20118. http://dx.doi.org/10.1002/jor.20118
    • (2006) J. Orthop. Res. , vol.24 , Issue.5 , pp. 898-907
    • Isaksson, H.1    van Donkelaar, C.C.2    Huiskes, R.3    Ito, K.4
  • 50
    • 33646417935 scopus 로고    scopus 로고
    • Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing
    • Isaksson, H., Wilson, W., van Donkelaar, C.C., Huiskes, R., Ito, K.: Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39(8), 1507–1516 (2006). doi:10.1016/j.jbiomech.2005.01.037. http://dx.doi.org/10.1016/j.jbiomech.2005.01.037
    • (2006) J. Biomech. , vol.39 , Issue.8 , pp. 1507-1516
    • Isaksson, H.1    Wilson, W.2    van Donkelaar, C.C.3    Huiskes, R.4    Ito, K.5
  • 51
    • 34249720606 scopus 로고    scopus 로고
    • Bone regeneration during distraction osteogenesis: Mechano-regulation by shear strain and fluid velocity
    • Isaksson, H., Comas, O., van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40(9), 2002–2011 (2007). doi:10.1016/j.jbiomech.2006.09.028. http://dx.doi.org/10.1016/j.jbiomech.2006.09.028
    • (2007) J. Biomech. , vol.40 , Issue.9 , pp. 2002-2011
    • Isaksson, H.1    Comas, O.2    van Donkelaar, C.C.3    Mediavilla, J.4    Wilson, W.5    Huiskes, R.6    Ito, K.7
  • 52
    • 46449125838 scopus 로고    scopus 로고
    • Mechanical stimulation of osteoblasts using steady and dynamic fluid flow
    • Jaasma, M.J., O’Brien, F.J.: Mechanical stimulation of osteoblasts using steady and dynamic fluid flow. Tissue Eng. Part A 14(7), 1213–1223 (2008). doi:10.1089/tea.2007.0321. http://dx.doi.org/10.1089/tea.2007.0321
    • (2008) Tissue Eng. Part A , vol.14 , Issue.7 , pp. 1213-1223
    • Jaasma, M.J.1    O’Brien, F.J.2
  • 53
    • 35348847063 scopus 로고    scopus 로고
    • Cell mechanics: Integrating cell responses to mechanical stimuli
    • Janmey, P.A., McCulloch, C.A.: Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9(1), 1–34 (2007). doi:10.1146/annurev.bioeng.9.060906. 151927. http://www.annualreviews.org/doi/abs/10.1146/annurev.bioeng.9.060906.151927, http://www.annualreviews.org/doi/pdf/10.1146/annurev.bioeng.9.060906.151927
    • (2007) Annu. Rev. Biomed. Eng. , vol.9 , Issue.1 , pp. 1-34
    • Janmey, P.A.1    McCulloch, C.A.2
  • 54
    • 63149130693 scopus 로고    scopus 로고
    • Deformation simulation of cells seeded on a collagen-gag scaffold in a flow perfusion bioreactor using a sequential 3d cfd-elastostatics model
    • Jungreuthmayer, C., Jaasma, M.J., Al-Munajjed, A.A., Zanghellini, J., Kelly, D.J., O’Brien, F.J.: Deformation simulation of cells seeded on a collagen-gag scaffold in a flow perfusion bioreactor using a sequential 3d cfd-elastostatics model. Med. Eng. Phys. 31(4), 420–427 (2009). doi:10.1016/j.medengphy.2008.11.003. http://dx.doi.org/10.1016/j.medengphy.2008.11.003
    • (2009) Med. Eng. Phys. , vol.31 , Issue.4 , pp. 420-427
    • Jungreuthmayer, C.1    Jaasma, M.J.2    Al-Munajjed, A.A.3    Zanghellini, J.4    Kelly, D.J.5    O’Brien, F.J.6
  • 55
    • 19744379584 scopus 로고    scopus 로고
    • Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects
    • Kelly, D.J., Prendergast, P.J.: Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7), 1413–1422 (2005). doi:10.1016/j.jbiomech.2004.06.026. http://dx.doi.org/10.1016/j.jbiomech.2004.06.026
    • (2005) J. Biomech. , vol.38 , Issue.7 , pp. 1413-1422
    • Kelly, D.J.1    Prendergast, P.J.2
  • 56
    • 33750625135 scopus 로고    scopus 로고
    • Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair
    • Kelly, D.J., Prendergast, P.J.: Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng. 12(9), 2509–2519 (2006). doi:10.1089/ten.2006.12.2509. http://dx.doi.org/10.1089/ten.2006.12.2509
    • (2006) Tissue Eng , vol.12 , Issue.9 , pp. 2509-2519
    • Kelly, D.J.1    Prendergast, P.J.2
  • 57
    • 0032512733 scopus 로고    scopus 로고
    • The third culture
    • Kelly, K.: The third culture. Science 279(5353), 992–993 (1998). doi:10.1126/science.279.5353.992. http://www.sciencemag.org/content/279/5353/992.short
    • (1998) Science , vol.279 , Issue.5353 , pp. 992-993
    • Kelly, K.1
  • 58
    • 33747117890 scopus 로고    scopus 로고
    • Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures
    • Kelly, T.A.N., Ng, K.W., Wang, C.C.B., Ateshian, G.A., Hung, C.T.: Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J. Biomech. 39(8), 1489–1497 (2006). doi:10.1016/j.jbiomech.2005.03.031. http://www.sciencedirect.com/science/article/B6T82-4GH4B00-1/2/76d2371137ab41375f98c24852d1fd7d
    • (2006) J. Biomech. , vol.39 , Issue.8 , pp. 1489-1497
    • Kelly, T.A.N.1    Ng, K.W.2    Wang, C.C.B.3    Ateshian, G.A.4    Hung, C.T.5
  • 59
    • 72049130612 scopus 로고    scopus 로고
    • Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach
    • Khayyeri, H., Checa, S., Tgil, M., Prendergast, P.J.: Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J. Orthop. Res. 27(12), 1659–1666 (2009). doi:10.1002/jor.20926. http://dx.doi.org/10.1002/jor.20926
    • (2009) J. Orthop. Res. , vol.27 , Issue.12 , pp. 1659-1666
    • Khayyeri, H.1    Checa, S.2    Tgil, M.3    Prendergast, P.J.4
  • 60
    • 79952112305 scopus 로고    scopus 로고
    • Tissue differentiation in an in vivo bioreactor: In silico investigations of scaffold stiffness
    • Khayyeri, H., Checa, S., Tägil, M., O’Brien, F., Prendergast, P.: Tissue differentiation in an in vivo bioreactor: in silico investigations of scaffold stiffness. J. Mater. Sci. Mater. Med. 21, 2331–2336 (2010). doi:10.1007/s10856-009-3973-0. http://dx.doi.org/10.1007/s10856-009-3973-0
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 2331-2336
    • Khayyeri, H.1    Checa, S.2    Tägil, M.3    O’Brien, F.4    Prendergast, P.5
  • 61
    • 79953029767 scopus 로고    scopus 로고
    • Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity
    • Khayyeri, H., Checa, S., Tgil, M., Aspenberg, P., Prendergast, P.J.: Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity. J. Biomech. 44(6), 1051–1058 (2011). doi:10.1016/j.jbiomech. 2011.02.003. http://www.sciencedirect.com/science/article/pii/S0021929011000844
    • (2011) J. Biomech. , vol.44 , Issue.6 , pp. 1051-1058
    • Khayyeri, H.1    Checa, S.2    Tgil, M.3    Aspenberg, P.4    Prendergast, P.J.5
  • 62
    • 79951728413 scopus 로고    scopus 로고
    • Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage: A numerical study
    • Khoshgoftar, M., van Donkelaar, C.C., Ito, K.: Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage: a numerical study. Comput. Methods Biomech. Biomed. Eng. 14(2), 135–144 (2011). doi:10.1080/10255842.2010.519335. http://www.tandfonline.com/doi/abs/10.1080/10255842.2010. 519335, http://www.tandfonline.com/doi/pdf/10.1080/10255842.2010.519335
    • (2011) Comput. Methods Biomech. Biomed. Eng. , vol.14 , Issue.2 , pp. 135-144
    • Khoshgoftar, M.1    van Donkelaar, C.C.2    Ito, K.3
  • 63
    • 1642313674 scopus 로고    scopus 로고
    • Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading
    • Kjaer, M.: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84(2), 649–698 (2004). doi:10.1152/physrev.00031.2003. http://dx.doi.org/10.1152/physrev.00031.2003
    • (2004) Physiol. Rev. , vol.84 , Issue.2 , pp. 649-698
    • Kjaer, M.1
  • 65
    • 0037398739 scopus 로고    scopus 로고
    • A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants
    • Klisch, S.M., Chen, S.S., Sah, R.L., Hoger, A.: A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. J. Biomech. Eng. 125(2), 169–179 (2003)
    • (2003) J. Biomech. Eng. , vol.125 , Issue.2 , pp. 169-179
    • Klisch, S.M.1    Chen, S.S.2    Sah, R.L.3    Hoger, A.4
  • 66
    • 46749133532 scopus 로고    scopus 로고
    • A cartilage growth mixture model with collagen remodeling: Validation protocols
    • Klisch, S.M., Asanbaeva, A., Oungoulian, S.R., Masuda, K., Thonar, E.J.M., Davol, A., Sah, R.L.: A cartilage growth mixture model with collagen remodeling: validation protocols. J. Biomech. Eng. 130(3), 031006 (2008). doi:10.1115/1.2907754. http://dx.doi.org/10.1115/1.2907754
    • (2008) J. Biomech. Eng. , vol.130 , Issue.3
    • Klisch, S.M.1    Asanbaeva, A.2    Oungoulian, S.R.3    Masuda, K.4    Thonar, E.J.M.5    Davol, A.6    Sah, R.L.7
  • 67
    • 0036342923 scopus 로고    scopus 로고
    • A mechano-regulation model for tissue differentiation during fracture healing: Analysis of gap size and loading
    • Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002)
    • (2002) J. Biomech. , vol.35 , Issue.9 , pp. 1163-1171
    • Lacroix, D.1    Prendergast, P.J.2
  • 68
    • 0036120586 scopus 로고    scopus 로고
    • Biomechanical model to simulate tissue differentiation and bone regeneration: Application to fracture healing
    • Lacroix, D., Prendergast, P.J., Li, G., Marsh, D.: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Comput. 40(1), 14–21 (2002)
    • (2002) Med. Biol. Eng. Comput. , vol.40 , Issue.1 , pp. 14-21
    • Lacroix, D.1    Prendergast, P.J.2    Li, G.3    Marsh, D.4
  • 69
    • 0348107263 scopus 로고    scopus 로고
    • Microrheology, stress fluctuations, and active behavior of living cells
    • Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C.: Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91(19), 198101 (2003). doi:10.1103/PhysRevLett.91.198101
    • (2003) Phys. Rev. Lett. , vol.91 , Issue.19
    • Lau, A.W.C.1    Hoffman, B.D.2    Davies, A.3    Crocker, J.C.4    Lubensky, T.C.5
  • 70
    • 34548548381 scopus 로고    scopus 로고
    • The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with tgf-beta3
    • Lima, E.G., Bian, L., Ng, K.W., Mauck, R.L., Byers, B.A., Tuan, R.S., Ateshian, G.A., Hung, C.T.: The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with tgf-beta3. Osteoarthr. Cartil 15(9), 1025–1033 (2007). doi:10.1016/j.joca.2007.03.008. http://dx.doi.org/10.1016/j.joca.2007.03.008
    • (2007) Osteoarthr. Cartil , vol.15 , Issue.9 , pp. 1025-1033
    • Lima, E.G.1    Bian, L.2    Ng, K.W.3    Mauck, R.L.4    Byers, B.A.5    Tuan, R.S.6    Ateshian, G.A.7    Hung, C.T.8
  • 71
    • 0035215822 scopus 로고    scopus 로고
    • Mechanobiology of initial pseudarthrosis formation with oblique fractures
    • Loboa, E.G., Beaupr, G.S., Carter, D.R.: Mechanobiology of initial pseudarthrosis formation with oblique fractures. J. Orthop. Res. 19(6), 1067–1072 (2001). http://dx.doi.org/10.1016/S0736-0266(01)00028-6
    • (2001) J. Orthop. Res. , vol.19 , Issue.6 , pp. 1067-1072
    • Loboa, E.G.1    Beaupr, G.S.2    Carter, D.R.3
  • 72
    • 1642563967 scopus 로고    scopus 로고
    • The role of bioreactors in tissue engineering
    • Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2), 80–86 (2004). doi:10.1016/j.tibtech.2003.12.001. http://www.sciencedirect. com/science/article/B6TCW-4B7231G-2/2/2db5486ab02127892b5708fc9b97c5bf
    • (2004) Trends Biotechnol , vol.22 , Issue.2 , pp. 80-86
    • Martin, I.1    Wendt, D.2    Heberer, M.3
  • 73
    • 0344825353 scopus 로고    scopus 로고
    • The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading
    • Mauck, R.L., Wang, C.C.B., Oswald, E.S., Ateshian, G.A., Hung, C.T.: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11(12), 879–890 (2003). doi:10.1016/j.joca.2003.08.006. http://www.sciencedirect.com/science/article/B6WP3-49SWBCC-1/2/f33484507367eff3b262cb7434c5fa1d
    • (2003) Osteoarthr. Cartil. , vol.11 , Issue.12 , pp. 879-890
    • Mauck, R.L.1    Wang, C.C.B.2    Oswald, E.S.3    Ateshian, G.A.4    Hung, C.T.5
  • 74
    • 0344825353 scopus 로고    scopus 로고
    • The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading
    • Mauck, R.L., Wang, C.C.B., Oswald, E.S., Ateshian, G.A., Hung, C.T.: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11(12), 879–890 (2003)
    • (2003) Osteoarthr. Cartil. , vol.11 , Issue.12 , pp. 879-890
    • Mauck, R.L.1    Wang, C.C.B.2    Oswald, E.S.3    Ateshian, G.A.4    Hung, C.T.5
  • 76
    • 77956430523 scopus 로고    scopus 로고
    • Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression
    • Meyer, E.G., Buckley, C.T., Thorpe, S.D., Kelly, D.J.: Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J. Biomech. 43(13), 2516–2523 (2010). doi:10.1016/j.jbiomech.2010.05.020. http://www.sciencedirect.com/science/article/pii/S0021929010002939
    • (2010) J. Biomech. , vol.43 , Issue.13 , pp. 2516-2523
    • Meyer, E.G.1    Buckley, C.T.2    Thorpe, S.D.3    Kelly, D.J.4
  • 77
    • 23944432418 scopus 로고    scopus 로고
    • A theoretical description of elastic pillar substrates in biophysical experiments
    • Mohrdieck, C., Wanner, A., Roos, W., Roth, A., Sackmann, E., Spatz, J.P., Arzt, E.: A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6(8), 1492–1498 (2005). http://dx.doi.org/10.1002/cphc.200500109
    • (2005) Chemphyschem , vol.6 , Issue.8 , pp. 1492-1498
    • Mohrdieck, C.1    Wanner, A.2    Roos, W.3    Roth, A.4    Sackmann, E.5    Spatz, J.P.6    Arzt, E.7
  • 78
    • 79951727770 scopus 로고    scopus 로고
    • The influence of fibre orientation on the equilibrium properties of neutral and charged biphasic tissues
    • 7 pages
    • Nagel, T., Kelly, D.: The influence of fibre orientation on the equilibrium properties of neutral and charged biphasic tissues. J. Biomech. Eng. 132(11), 114506 (2010) (7 pages)
    • (2010) J. Biomech. Eng. , vol.132 , Issue.11
    • Nagel, T.1    Kelly, D.2
  • 79
    • 84859396561 scopus 로고    scopus 로고
    • Mechanically induced structural changes during dynamic compression of engineered cartilaginous constructs can potentially explain increases in bulk mechanical properties
    • Nagel, T., Kelly, D.: Mechanically induced structural changes during dynamic compression of engineered cartilaginous constructs can potentially explain increases in bulk mechanical properties. J. Royal Soc. Interface (2011). doi:10.1098/rsif.2011.0449. http://rsif.royalsocietypublishing. org/content/early/2011/09/07/rsif.2011.0449.abstract, http://rsif.royalsocietypublishing.org/content/early/2011/09/07/rsif.2011.0449.full.pdf+html
    • (2011) J. Royal Soc. Interface
    • Nagel, T.1    Kelly, D.2
  • 80
    • 84861101130 scopus 로고    scopus 로고
    • Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels
    • Nagel, T., Kelly, D.: Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels. Biomech. Model Mechanobiol. (2011). doi:10.1007/s10237-011-0313-3. http://dx.doi.org/10.1007/s10237-011-0313-3
    • (2011) Biomech. Model Mechanobiol.
    • Nagel, T.1    Kelly, D.2
  • 81
    • 77955109456 scopus 로고    scopus 로고
    • Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair
    • Nagel, T., Kelly, D.J.: Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech. Model Mechanobiol. 9(3), 359–372 (2010). doi:10.1007/s10237-009-0182-1. http://dx.doi.org/10.1007/s10237-009-0182-1
    • (2010) Biomech. Model Mechanobiol. , vol.9 , Issue.3 , pp. 359-372
    • Nagel, T.1    Kelly, D.J.2
  • 82
    • 77949898211 scopus 로고    scopus 로고
    • A theoretical model to study the effects of cellular stiffening on the damage evolution in deep tissue injury
    • Nagel, T., Loerakker, S., Oomens, C.W.J.: A theoretical model to study the effects of cellular stiffening on the damage evolution in deep tissue injury. Comput. Methods Biomech. Biomed. Eng. p. 1 (2009). doi:10.1080/10255840902788603. http://dx.doi.org/10.1080/10255840902788603
    • (2009) Comput. Methods Biomech. Biomed. Eng. P. , pp. 1
    • Nagel, T.1    Loerakker, S.2    Oomens, C.W.J.3
  • 83
    • 23844487086 scopus 로고    scopus 로고
    • Emergent patterns of growth controlled by multicellular form and mechanics
    • Nelson, C.M., Jean, R.P., Tan, J.L., Liu, W.F., Sniadecki, N.J., Spector, A.A., Chen, C.S.: Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. U S A 102(33), 11594–11599 (2005). doi:10.1073/pnas.0502575102. http://www.pnas.org/content/102/33/11594.abstract, http://www.pnas.org/content/102/33/11594.full.pdf+html
    • (2005) Proc. Natl Acad. Sci. U S A , vol.102 , Issue.33 , pp. 11594-11599
    • Nelson, C.M.1    Jean, R.P.2    Tan, J.L.3    Liu, W.F.4    Sniadecki, N.J.5    Spector, A.A.6    Chen, C.S.7
  • 84
    • 33646196554 scopus 로고    scopus 로고
    • Limitation of cell adhesion by the elasticity of the extracellular matrix
    • Nicolas, A., Safran, S.A.: Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys. J. 91(1), 61–73 (2006). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 1479082&tool=pmcentrez&rendertype=abstract
    • (2006) Biophys. J. , vol.91 , Issue.1 , pp. 61-73
    • Nicolas, A.1    Safran, S.A.2
  • 85
    • 4344596239 scopus 로고    scopus 로고
    • Cell mechanosensitivity controls the anisotropy of focal adhesions
    • Nicolas, A., Geiger, B., Safran, S.A.: Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Natl Acad. Sci. U S A 101(34), 12520–12525 (2004). http://www.pnas.org/content/101/34/12520.abstract
    • (2004) Proc. Natl Acad. Sci. U S A , vol.101 , Issue.34 , pp. 12520-12525
    • Nicolas, A.1    Geiger, B.2    Safran, S.A.3
  • 86
    • 19944417612 scopus 로고    scopus 로고
    • Verification, validation, and predictive capability in computational engineering and physics
    • Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57(5), 345–384 (2004). doi:10.1115/1.1767847. http://link.aip.org/link/?AMR/57/345/1
    • (2004) Appl. Mech. Rev. , vol.57 , Issue.5 , pp. 345-384
    • Oberkampf, W.L.1    Trucano, T.G.2    Hirsch, C.3
  • 87
    • 84860722734 scopus 로고    scopus 로고
    • Computational modeling of bone density profiles in response to gait: A subject-specific approach
    • Pang, H., Shiwalkar, A.P., Madormo, C.M., Taylor, R.E., Andriacchi, T.P., Kuhl, E.: Computational modeling of bone density profiles in response to gait: a subject-specific approach. Biomech. Model Mechanobiol. (2011). doi:10.1007/s10237-011-0318-y. http://dx.doi.org/10.1007/s10237-011-0318-y
    • (2011) Biomech. Model Mechanobiol.
    • Pang, H.1    Shiwalkar, A.P.2    Madormo, C.M.3    Taylor, R.E.4    Andriacchi, T.P.5    Kuhl, E.6
  • 88
    • 40749124949 scopus 로고    scopus 로고
    • The simulation of stress fibre and focal adhesion development in cells on patterned substrates
    • Pathak, A., Deshpande, V.S., McMeeking, R.M., Evans, A.G.: The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. Royal Soc. Interface 5(22), 507–524 (2008). http://rsif.royalsocietypublishing.org/content/5/22/507.abstract
    • (2008) J. Royal Soc. Interface , vol.5 , Issue.22 , pp. 507-524
    • Pathak, A.1    Deshpande, V.S.2    McMeeking, R.M.3    Evans, A.G.4
  • 89
    • 0001691954 scopus 로고
    • Eine neue Theorie über den Einflu mechanischer Reize auf die Differenzierung der Stützgewebe
    • Pauwels, F.: Eine neue Theorie über den Einflu mechanischer Reize auf die Differenzierung der Stützgewebe. Anat. Embryol. 121(6), 478–515 (1960). http://dx.doi.org/10.1007/BF00523401
    • (1960) Anat. Embryol. , vol.121 , Issue.6 , pp. 478-515
    • Pauwels, F.1
  • 90
    • 34250894953 scopus 로고    scopus 로고
    • Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation
    • Perez, M., Prendergast, P.: Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40, 2244–2253 (2007). http://linkinghub.elsevier.com/retrieve/pii/S0021929006003988
    • (2007) J. Biomech. , vol.40 , pp. 2244-2253
    • Perez, M.1    Prendergast, P.2
  • 91
    • 0031157459 scopus 로고    scopus 로고
    • Esb research award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces
    • Prendergast, P., Huiskes, R., Sballe, K.: Esb research award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6), 539–548 (1997)
    • (1997) J. Biomech. , vol.30 , Issue.6 , pp. 539-548
    • Prendergast, P.1    Huiskes, R.2    Sballe, K.3
  • 92
    • 81255135955 scopus 로고    scopus 로고
    • Computer simulating a clinical trial of a load-bearing implant: An example of an intramedullary prosthesis
    • Prendergast, P.J., Galibarov, P.E., Lowery, C., Lennon, A.B.: Computer simulating a clinical trial of a load-bearing implant: an example of an intramedullary prosthesis. J. Mech. Behav. Biomed. Mater. 4(8), 1880–1887 (2011). doi:10.1016/j.jmbbm.2011.06.005. http://dx.doi.org/10.1016/j.jmbbm.2011.06.005
    • (2011) J. Mech. Behav. Biomed. Mater. , vol.4 , Issue.8 , pp. 1880-1887
    • Prendergast, P.J.1    Galibarov, P.E.2    Lowery, C.3    Lennon, A.B.4
  • 95
    • 0002352258 scopus 로고
    • Beiträge zur Morphologie der funktionellen Anpassung. 3. Beschreibung und Erluterung einer knöchernen Kniegelenksankylose
    • Roux, W.: Beiträge zur Morphologie der funktionellen Anpassung. 3. Beschreibung und Erluterung einer knöchernen Kniegelenksankylose. Arch. Anat. Entwicklungsgeschichte 10, 120–158 (1885)
    • (1885) Arch. Anat. Entwicklungsgeschichte , vol.10 , pp. 120-158
    • Roux, W.1
  • 96
    • 67049109694 scopus 로고    scopus 로고
    • Straining mode-dependent collagen remodeling in engineered cardiovascular tissue
    • Rubbens, M.P., Mol, A., van Marion, M.H., Hanemaaijer, R., Bank, R.A., Baaijens, F.P.T., Bouten, C.V.C.: Straining mode-dependent collagen remodeling in engineered cardiovascular tissue. Tissue Eng. Part A 15(4), 841–849 (2009). doi:10.1089/ten.tea.2008.0185. http://dx.doi.org/10.1089/ten.tea.2008.0185
    • (2009) Tissue Eng. Part A , vol.15 , Issue.4 , pp. 841-849
    • Rubbens, M.P.1    Mol, A.2    van Marion, M.H.3    Hanemaaijer, R.4    Bank, R.A.5    Baaijens, F.P.T.6    Bouten, C.V.C.7
  • 97
    • 0032125515 scopus 로고    scopus 로고
    • The aortic valve microstructure: Effects of transvalvular pressure
    • Sacks, M.S., Smith, D.B., Hiester, E.D.: The aortic valve microstructure: effects of transvalvular pressure. J. Biomed. Mater. Res. 41(1), 131–141 (1998). http://dx.doi.org/10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q
    • (1998) J. Biomed. Mater. Res , vol.41 , Issue.1 , pp. 131-141
    • Sacks, M.S.1    Smith, D.B.2    Hiester, E.D.3
  • 98
    • 70449578274 scopus 로고    scopus 로고
    • Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels
    • Sander, E.A., Stylianopoulos, T., Tranquillo, R.T., Barocas, V.H.: Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl Acad. Sci. U S A 106(42), 17675–17680 (2009). doi:10.1073/pnas.0903716106. http://dx.doi.org/10.1073/pnas.0903716106
    • (2009) Proc. Natl Acad. Sci. U S A , vol.106 , Issue.42 , pp. 17675-17680
    • Sander, E.A.1    Stylianopoulos, T.2    Tranquillo, R.T.3    Barocas, V.H.4
  • 99
    • 40249089772 scopus 로고    scopus 로고
    • A finite element study of mechanical stimuli in scaffolds for bone tissue engineering
    • Sandino, C., Planell, J., Lacroix, D.: A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41(5), 1005–1014 (2008). doi:10.1016/j.jbiomech. 2007.12.011. http://www.sciencedirect.com/science/article/pii/S0021929007005428
    • (2008) J. Biomech. , vol.41 , Issue.5 , pp. 1005-1014
    • Sandino, C.1    Planell, J.2    Lacroix, D.3
  • 100
    • 74449093597 scopus 로고    scopus 로고
    • Simulation of angiogenesis and cell differentiation in a cap scaffold subjected to compressive strains using a lattice modeling approach
    • Sandino, C., Checa, S., Prendergast, P.J., Lacroix, D.: Simulation of angiogenesis and cell differentiation in a cap scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8), 2446–2452 (2010). doi:10.1016/j.biomaterials.2009.11.063. http://dx.doi.org/10.1016/j.biomaterials.2009.11.063
    • (2010) Biomaterials , vol.31 , Issue.8 , pp. 2446-2452
    • Sandino, C.1    Checa, S.2    Prendergast, P.J.3    Lacroix, D.4
  • 101
    • 44749083252 scopus 로고    scopus 로고
    • Micro-macro numerical modelling of bone regeneration in tissue engineering
    • Sanz-Herrera, J., Garca-Aznar, J., Doblar, M.: Micro-macro numerical modelling of bone regeneration in tissue engineering. Comput. Methods Appl. Mech. Eng. 197(33–40), 3092– 3107 (2008). doi:10.1016/j.cma.2008.02.010. http://www.sciencedirect.com/science/article/pii/S0045782508000704
    • (2008) Comput. Methods Appl. Mech. Eng. , vol.197 , Issue.33-40 , pp. 3092-3107
    • Sanz-Herrera, J.1    Garca-Aznar, J.2    Doblar, M.3
  • 102
    • 56349136287 scopus 로고    scopus 로고
    • On scaffold designing for bone regeneration: A computational multiscale approach
    • Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: On scaffold designing for bone regeneration: a computational multiscale approach. Acta. Biomater. 5(1), 219–229 (2009). doi:10.1016/j.actbio.2008.06.021. http://dx.doi.org/10.1016/j.actbio.2008.06.021
    • (2009) Acta. Biomater. , vol.5 , Issue.1 , pp. 219-229
    • Sanz-Herrera, J.A.1    García-Aznar, J.M.2    Doblaré, M.3
  • 103
    • 77956467143 scopus 로고    scopus 로고
    • Scaffold microarchitecture determines internal bone directional growth structure: A numerical study
    • Sanz-Herrera, J.A., Doblaré, M., García-Aznar, J.M.: Scaffold microarchitecture determines internal bone directional growth structure: a numerical study. J. Biomech. 43(13), 2480– 2486 (2010). doi:10.1016/j.jbiomech.2010.05.027. http://dx.doi.org/10.1016/j.jbiomech. 2010.05.027
    • (2010) J. Biomech. , vol.43 , Issue.13 , pp. 2480-2486
    • Sanz-Herrera, J.A.1    Doblaré, M.2    García-Aznar, J.M.3
  • 104
    • 18244387710 scopus 로고    scopus 로고
    • In vitro, in vivo, in silico: Computational systems in tissue engineering and regenerative medicine
    • Semple, J.L., Woolridge, N., Lumsden, C.J.: In vitro, in vivo, in silico: computational systems in tissue engineering and regenerative medicine. Tissue Eng. 11(3–4), 341–356 (2005). doi:10.1089/ten.2005.11.341. http://dx.doi.org/10.1089/ten.2005.11.341
    • (2005) Tissue Eng , vol.11 , Issue.3-4 , pp. 341-356
    • Semple, J.L.1    Woolridge, N.2    Lumsden, C.J.3
  • 105
    • 84855808363 scopus 로고    scopus 로고
    • Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells
    • Sheehy, E.J., Buckley, C.T., Kelly, D.J.: Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 63(11), 3284–3293 (2011). doi:10.1016/j.bbrc.2011.11.105. http://www.sciencedirect.com/science/article/pii/S0006291X11021267
    • (2011) Biochem. Biophys. Res. Commun. , vol.63 , Issue.11 , pp. 3284-3293
    • Sheehy, E.J.1    Buckley, C.T.2    Kelly, D.J.3
  • 106
    • 26444455975 scopus 로고    scopus 로고
    • Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic
    • Shefelbine, S.J., Augat, P., Claes, L., Simon, U.: Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 38(12), 2440–2450 (2005). doi:10.1016/j.jbiomech.2004.10.019. http://dx.doi.org/10.1016/j.jbiomech.2004.10.019
    • (2005) J. Biomech. , vol.38 , Issue.12 , pp. 2440-2450
    • Shefelbine, S.J.1    Augat, P.2    Claes, L.3    Simon, U.4
  • 107
    • 79251474363 scopus 로고    scopus 로고
    • A numerical model of the fracture healing process that describes tissue development and revascularisation
    • Simon, U., Augat, P., Utz, M., Claes, L.: A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput. Methods Biomech. Biomed. Eng. 14(1), 79–93 (2011). doi:10.1080/10255842.2010.499865. http://dx.doi.org/10.1080/10255842.2010.499865
    • (2011) Comput. Methods Biomech. Biomed. Eng. , vol.14 , Issue.1 , pp. 79-93
    • Simon, U.1    Augat, P.2    Utz, M.3    Claes, L.4
  • 108
    • 77952477801 scopus 로고    scopus 로고
    • A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow
    • Stops, A.J.F., Heraty, K.B., Browne, M., O’Brien, F.J., McHugh, P.E.: A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J. Biomech. 43(4), 618–626 (2010). doi:10.1016/j.jbiomech.2009.10.037. http://dx.doi.org/10.1016/j.jbiomech.2009.10.037
    • (2010) J. Biomech. , vol.43 , Issue.4 , pp. 618-626
    • Stops, A.J.F.1    Heraty, K.B.2    Browne, M.3    O’Brien, F.J.4    McHugh, P.E.5
  • 109
    • 1042288112 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: Overview, scope and challenges
    • Sun, W., Darling, A., Starly, B., Nam, J.: Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39(1), 29–47 (2004). doi:10.1042/BA20030108. http://dx.doi.org/10.1042/BA20030108
    • (2004) Biotechnol. Appl. Biochem. , vol.39 , Issue.1 , pp. 29-47
    • Sun, W.1    Darling, A.2    Starly, B.3    Nam, J.4
  • 110
    • 1042265021 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds
    • Sun, W., Starly, B., Darling, A., Gomez, C.: Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol. Appl. Biochem. 39(1), 49–58 (2004). doi:10.1042/BA20030109. http://dx.doi.org/10.1042/BA20030109
    • (2004) Biotechnol. Appl. Biochem. , vol.39 , Issue.1 , pp. 49-58
    • Sun, W.1    Starly, B.2    Darling, A.3    Gomez, C.4
  • 112
    • 79957984078 scopus 로고    scopus 로고
    • Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage
    • van Turnhout, M., Kranenbarg, S., van Leeuwen, J.: Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage. Biomech. Model. Mechanobiol. 10(2), 269–279 (2010). http://dx.doi.org/10.1007/s10237-010-0233-7, 10.1007/s10237-010-0233-7
    • (2010) Biomech. Model. Mechanobiol. , vol.10 , Issue.2 , pp. 269-279
    • van Turnhout, M.1    Kranenbarg, S.2    van Leeuwen, J.3
  • 113
    • 0034614513 scopus 로고    scopus 로고
    • Substrate deformation determines actin cytoskeleton reorganization: A mathematical modeling and experimental study
    • Wang, J.: Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J. Theor. Biol. 202(1), 33–41 (2000). doi:10.1006/jtbi.999.1035. http://www.sciencedirect.com/science/article/B6WMD-45CWX3K-7T/2/6c255986d529b28f0ff948b2bc2d63ac
    • (2000) J. Theor. Biol. , vol.202 , Issue.1 , pp. 33-41
    • Wang, J.1
  • 114
    • 46749084668 scopus 로고    scopus 로고
    • Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch
    • Wei, Z., Deshpande, V.S., McMeeking, R.M., Evans, A.G.: Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J. Biomech. Eng. 130(3), 031009 (2008). doi:10.1115/1.2907745. http://dx.doi.org/10.1115/1.2907745
    • (2008) J. Biomech. Eng. , vol.130 , Issue.3
    • Wei, Z.1    Deshpande, V.S.2    McMeeking, R.M.3    Evans, A.G.4
  • 115
    • 33749329157 scopus 로고    scopus 로고
    • Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm
    • Wilson, W., Driessen, N.J.B., van Donkelaar, C.C., Ito, K.: Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr. Cartil. 14(11), 1196–1202 (2006). doi:10.1016/j.joca.2006.05.006. http://dx.doi.org/10.1016/j.joca.2006.05.006
    • (2006) Osteoarthr. Cartil. , vol.14 , Issue.11 , pp. 1196-1202
    • Wilson, W.1    Driessen, N.J.B.2    van Donkelaar, C.C.3    Ito, K.4
  • 116
    • 0033884810 scopus 로고    scopus 로고
    • Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia
    • Wren, T.A., Beaupr, G.S., Carter, D.R.: Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J. Rehabil. Res. Dev. 37(2), 135–143 (2000)
    • (2000) J. Rehabil. Res. Dev. , vol.37 , Issue.2 , pp. 135-143
    • Wren, T.A.1    Beaupr, G.S.2    Carter, D.R.3
  • 117
    • 57549109228 scopus 로고    scopus 로고
    • The impact of low levels of collagen ix and pyridinoline on the mechanical properties of in vitro engineered cartilage
    • Yan, D., Zhou, G., Zhou, X., Liu, W., Zhang, W.J., Luo, X., Zhang, L., Jiang, T., Cui, L., Cao, Y.: The impact of low levels of collagen ix and pyridinoline on the mechanical properties of in vitro engineered cartilage. Biomaterials 30(5), 814–821 (2009). doi:10.1016/j.biomaterials.2008.10.042. http://www.sciencedirect.com/science/article/pii/S0142961208008168
    • (2009) Biomaterials , vol.30 , Issue.5 , pp. 814-821
    • Yan, D.1    Zhou, G.2    Zhou, X.3    Liu, W.4    Zhang, W.J.5    Luo, X.6    Zhang, L.7    Jiang, T.8    Cui, L.9    Cao, Y.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.