메뉴 건너뛰기




Volumn , Issue , 2015, Pages

Denoising autoencoder with modulated lateral connections learns invariant representations of natural images

Author keywords

[No Author keywords available]

Indexed keywords

DECODING; SIGNAL ENCODING;

EID: 85083953385     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (22)
  • 2
    • 84883201530 scopus 로고    scopus 로고
    • Deep learning of representations: Looking forward
    • Springer
    • Bengio, Y. Deep learning of representations: Looking forward. In Statistical Language and Speech Processing, pp. 1–37. Springer, 2013.
    • (2013) Statistical Language and Speech Processing , pp. 1-37
    • Bengio, Y.1
  • 4
    • 78649669320 scopus 로고    scopus 로고
    • Deep big simple neural nets for handwritten digit recogntion
    • Ciresan, D. C, Meier, U, Gambardella, L. M, and Schmidhuber, J. Deep big simple neural nets for handwritten digit recogntion. Neural Computation, 22(12):3207–3220, 2010.
    • (2010) Neural Computation , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 5
    • 84937964776 scopus 로고    scopus 로고
    • Discriminative unsupervised feature learning with convolutional neural networks
    • Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K eds
    • Dosovitskiy, A, Springenberg, J. T, Riedmiller, M, and Brox, T. Discriminative unsupervised feature learning with convolutional neural networks. In Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K (eds.), Advances in Neural Information Processing Systems (NIPS 2014), pp. 766–774. 2014.
    • (2014) Advances in Neural Information Processing Systems (NIPS 2014) , pp. 766-774
    • Dosovitskiy, A.1    Springenberg, J.T.2    Riedmiller, M.3    Brox, T.4
  • 6
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Földiák, P. Learning invariance from transformation sequences. Neural Computation, 3:194–200, 1991.
    • (1991) Neural Computation , vol.3 , pp. 194-200
    • Földiák, P.1
  • 7
    • 4444337497 scopus 로고
    • Neural network model for a mechanism of pattern recognition unaffected by shift in position - neocognitron
    • Fukushima, K. Neural network model for a mechanism of pattern recognition unaffected by shift in position - Neocognitron. Trans. IECE, J62-A(10):658–665, 1979.
    • (1979) Trans. IECE , vol.J62-A , Issue.10 , pp. 658-665
    • Fukushima, K.1
  • 9
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
    • Hubel, D. H and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.
    • (1962) The Journal of Physiology , vol.160 , Issue.1 , pp. 106
    • Hubel, D.H.1    Wiesel, T.N.2
  • 10
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces
    • Hyvärinen, A and Hoyer, P. Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural computation, 12(7):1705–1720, 2000.
    • (2000) Neural Computation , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.2
  • 11
    • 84930643107 scopus 로고    scopus 로고
    • Semi-supervised learning with deep generative models
    • Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K eds, Curran Associates, Inc
    • Kingma, D. P, Mohamed, S, Rezende, D. J, and Welling, M. Semi-supervised learning with deep generative models. In Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K (eds.), Advances in Neural Information Processing Systems (NIPS 2014), pp. 3581–3589. Curran Associates, Inc., 2014.
    • (2014) Advances in Neural Information Processing Systems (NIPS 2014) , pp. 3581-3589
    • Kingma, D.P.1    Mohamed, S.2    Rezende, D.J.3    Welling, M.4
  • 15
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A and Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607–609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 16
    • 84893409634 scopus 로고    scopus 로고
    • Deep learning made easier by linear transformations in percep-trons
    • Lawrence, N. D and Girolami, M eds, JMLR.org
    • Raiko, T, Valpola, H, and LeCun, Y. Deep learning made easier by linear transformations in percep-trons. In Lawrence, N. D and Girolami, M (eds.), AISTATS, volume 22 of JMLR Proceedings, pp. 924–932. JMLR.org, 2012.
    • (2012) AISTATS, Volume 22 of JMLR Proceedings , pp. 924-932
    • Raiko, T.1    Valpola, H.2    LeCun, Y.3
  • 17
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M and Poggio, T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 19
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. Deep learning in neural networks: an overview. Neural Networks, 61:85–117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.