-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y, Lamblin, P, Popovici, D, and Larochelle, H. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems (NIPS 2006), 2007.
-
(2007)
Advances in Neural Information Processing Systems (NIPS 2006)
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
2
-
-
84883201530
-
Deep learning of representations: Looking forward
-
Springer
-
Bengio, Y. Deep learning of representations: Looking forward. In Statistical Language and Speech Processing, pp. 1–37. Springer, 2013.
-
(2013)
Statistical Language and Speech Processing
, pp. 1-37
-
-
Bengio, Y.1
-
3
-
-
84899017362
-
Generalized denoising auto-encoders as generative models
-
Bengio, Y, Yao, L, Alain, G, and Vincent, P. Generalized denoising auto-encoders as generative models. In Advances in Neural Information Processing Systems, pp. 899–907, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 899-907
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
4
-
-
78649669320
-
Deep big simple neural nets for handwritten digit recogntion
-
Ciresan, D. C, Meier, U, Gambardella, L. M, and Schmidhuber, J. Deep big simple neural nets for handwritten digit recogntion. Neural Computation, 22(12):3207–3220, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.12
, pp. 3207-3220
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
5
-
-
84937964776
-
Discriminative unsupervised feature learning with convolutional neural networks
-
Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K eds
-
Dosovitskiy, A, Springenberg, J. T, Riedmiller, M, and Brox, T. Discriminative unsupervised feature learning with convolutional neural networks. In Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K (eds.), Advances in Neural Information Processing Systems (NIPS 2014), pp. 766–774. 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS 2014)
, pp. 766-774
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Riedmiller, M.3
Brox, T.4
-
6
-
-
0000188120
-
Learning invariance from transformation sequences
-
Földiák, P. Learning invariance from transformation sequences. Neural Computation, 3:194–200, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 194-200
-
-
Földiák, P.1
-
7
-
-
4444337497
-
Neural network model for a mechanism of pattern recognition unaffected by shift in position - neocognitron
-
Fukushima, K. Neural network model for a mechanism of pattern recognition unaffected by shift in position - Neocognitron. Trans. IECE, J62-A(10):658–665, 1979.
-
(1979)
Trans. IECE
, vol.J62-A
, Issue.10
, pp. 658-665
-
-
Fukushima, K.1
-
8
-
-
84860644702
-
Measuring invariances in deep networks
-
Goodfellow, I, Lee, H, Le, Q. V, Saxe, A, and Ng, A. Y. Measuring invariances in deep networks. In Advances in Neural Information Processing Systems (NIPS), pp. 646–654, 2009.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, pp. 646-654
-
-
Goodfellow, I.1
Lee, H.2
Le, Q.V.3
Saxe, A.4
Ng, A.Y.5
-
9
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
-
Hubel, D. H and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.
-
(1962)
The Journal of Physiology
, vol.160
, Issue.1
, pp. 106
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
10
-
-
0034222304
-
Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces
-
Hyvärinen, A and Hoyer, P. Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural computation, 12(7):1705–1720, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.7
, pp. 1705-1720
-
-
Hyvärinen, A.1
Hoyer, P.2
-
11
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K eds, Curran Associates, Inc
-
Kingma, D. P, Mohamed, S, Rezende, D. J, and Welling, M. Semi-supervised learning with deep generative models. In Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N, and Weinberger, K (eds.), Advances in Neural Information Processing Systems (NIPS 2014), pp. 3581–3589. Curran Associates, Inc., 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS 2014)
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
13
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A, Sutskever, I, and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS 2012), pp. 1106–1114, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS 2012)
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
Olshausen, B. A and Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607–609, 1996.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
16
-
-
84893409634
-
Deep learning made easier by linear transformations in percep-trons
-
Lawrence, N. D and Girolami, M eds, JMLR.org
-
Raiko, T, Valpola, H, and LeCun, Y. Deep learning made easier by linear transformations in percep-trons. In Lawrence, N. D and Girolami, M (eds.), AISTATS, volume 22 of JMLR Proceedings, pp. 924–932. JMLR.org, 2012.
-
(2012)
AISTATS, Volume 22 of JMLR Proceedings
, pp. 924-932
-
-
Raiko, T.1
Valpola, H.2
LeCun, Y.3
-
17
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
Riesenhuber, M and Poggio, T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.
-
(1999)
Nature Neuroscience
, vol.2
, Issue.11
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
19
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep learning in neural networks: an overview. Neural Networks, 61:85–117, 2015.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
21
-
-
56449114208
-
-
Technical Report 1316, Université de Montréal, dept. IRO
-
Vincent, P, Larochelle, H, Bengio, Y, and Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. Technical Report 1316, Université de Montréal, dept. IRO, 2008.
-
(2008)
Extracting and Composing Robust Features with Denoising Autoencoders
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
|