-
1
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10 (2): 251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.1
-
2
-
-
0001024110
-
First-and second-order methods for learning: Between steepest descent and Newton's method
-
R. Battiti. First-and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation, 4 (2): 141-166, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 141-166
-
-
Battiti, R.1
-
3
-
-
80053452783
-
Deep big simple neural nets excel on handwritten digit recognition
-
abs/1003.0358
-
D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big simple neural nets excel on handwritten digit recognition. CoRR, abs/1003.0358, 2010.
-
(2010)
CoRR
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
5
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786): 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
12
-
-
84899008187
-
Adding noise to the input of a model trained with a regularized objective
-
Université de Montréal, Montréal (QC), H3C 3J7, Canada, April
-
S. Rifai, X. Glorot, Y. Bengio, and P. Vincent. Adding noise to the input of a model trained with a regularized objective. Technical Report 1359, Université de Montréal, Montréal (QC), H3C 3J7, Canada, April 2011.
-
(2011)
Technical Report 1359
-
-
Rifai, S.1
Glorot, X.2
Bengio, Y.3
Vincent, P.4
-
13
-
-
84893411823
-
Accelerated gradient descent by factor-centering decomposition
-
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale
-
N. N. Schraudolph. Accelerated gradient descent by factor-centering decomposition. Technical Report IDSIA-33-98, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, 1998.
-
(1998)
Technical Report IDSIA-33-98
-
-
Schraudolph, N.N.1
-
14
-
-
0038231917
-
Centering neural network gradient factors
-
Genevieve Orr and Klaus-Robert Mller, editors, Springer Berlin / Heidelberg
-
N. N. Schraudolph. Centering neural network gradient factors. In Genevieve Orr and Klaus-Robert Mller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, pages 548-548. Springer Berlin / Heidelberg, 1998.
-
(1998)
Neural Networks: Tricks of the Trade of Lecture Notes in Computer Science
, vol.1524
, pp. 548
-
-
Schraudolph, N.N.1
-
15
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML08), pages 1096-1103, 2008.
-
(2008)
Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML08)
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
|