메뉴 건너뛰기




Volumn , Issue , 2017, Pages 2157-2169

Adversarial learning for neural dialogue generation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; NATURAL LANGUAGE PROCESSING SYSTEMS; REINFORCEMENT LEARNING;

EID: 85054729490     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d17-1230     Document Type: Conference Paper
Times cited : (615)

References (50)
  • 4
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proc. of ICLR.
    • (2015) Proc. of ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 9
    • 84976859194 scopus 로고
    • Likelihood ratio gradient estimation for stochastic systems
    • Peter W Glynn. 1990. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM 33(10):75–84.
    • (1990) Communications of the ACM , vol.33 , Issue.10 , pp. 75-84
    • Glynn, P.W.1
  • 15
    • 84994184277 scopus 로고    scopus 로고
    • A diversity-promoting objective function for neural conversation models
    • Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A diversity-promoting objective function for neural conversation models. In Proc. of NAACL-HLT.
    • (2016) Proc. Of NAACL-HLT
    • Li, J.1    Galley, M.2    Brockett, C.3    Gao, J.4    Dolan, B.5
  • 19
    • 85029377314 scopus 로고    scopus 로고
    • Deep reinforcement learning for dialogue generation
    • Jiwei Li, Will Monroe, Alan Ritter, and Dan Jurafsky. 2016d. Deep reinforcement learning for dialogue generation. EMNLP .
    • (2016) EMNLP
    • Li, J.1    Monroe, W.2    Ritter, A.3    Jurafsky, D.4
  • 20
    • 85072827450 scopus 로고    scopus 로고
    • How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation
    • Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. EMNLP .
    • (2016) EMNLP
    • Liu, C.-W.1    Lowe, R.2    Serban, I.V.3    Noseworthy, M.4    Charlin, L.5    Pineau, J.6
  • 22
    • 85122005718 scopus 로고    scopus 로고
    • On the evaluation of dialogue systems with next utterance classification
    • Ryan Lowe, Iulian V Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. On the evaluation of dialogue systems with next utterance classification. SIGDIAL .
    • (2016) SIGDIAL
    • Lowe, R.1    Serban, I.V.2    Noseworthy, M.3    Charlin, L.4    Pineau, J.5
  • 26
    • 85083951479 scopus 로고    scopus 로고
    • Sequence level training with recurrent neural networks
    • Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2016. Sequence level training with recurrent neural networks. ICLR .
    • (2016) ICLR
    • Ranzato, M.A.1    Chopra, S.2    Auli, M.3    Zaremba, W.4
  • 27
    • 80053292690 scopus 로고    scopus 로고
    • Data-driven response generation in social media
    • Alan Ritter, Colin Cherry, and William B Dolan. 2011. Data-driven response generation in social media. In Proceedings of EMNLP 2011. pages 583–593.
    • (2011) Proceedings of EMNLP 2011 , pp. 583-593
    • Ritter, A.1    Cherry, C.2    Dolan, W.B.3
  • 29
    • 84980367197 scopus 로고    scopus 로고
    • Building end-to-end dialogue systems using generative hierarchical neural network models
    • Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016a. Building end-to-end dialogue systems using generative hierarchical neural network models. In Proceedings of AAAI.
    • (2016) Proceedings of AAAI
    • Serban, I.V.1    Sordoni, A.2    Bengio, Y.3    Courville, A.4    Pineau, J.5
  • 34
    • 84943801401 scopus 로고    scopus 로고
    • Neural responding machine for short-text conversation
    • Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. In Proceedings of ACL-IJCNLP. pages 1577–1586.
    • (2015) Proceedings of ACL-IJCNLP , pp. 1577-1586
    • Shang, L.1    Lu, Z.2    Li, H.3
  • 35
    • 85063211276 scopus 로고    scopus 로고
    • Generating long and diverse responses with neural conversational models
    • Louis Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil. 2017. Generating long and diverse responses with neural conversational models. ICLR .
    • (2017) ICLR
    • Shao, L.1    Gouws, S.2    Britz, D.3    Goldie, A.4    Strope, B.5    Kurzweil, R.6
  • 41
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • Alan M Turing. 1950. Computing machinery and intelligence. Mind 59(236):433–460.
    • (1950) Mind , vol.59 , Issue.236 , pp. 433-460
    • Turing, A.M.1
  • 44
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3-4):229–256.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.