메뉴 건너뛰기




Volumn 16, Issue 1, 2019, Pages 22-28

Erratum: Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals (Annals of the American Thoracic Society (2019) 16 (22-28) DOI: 10.1513/AnnalsATS.201808-564PS);Control of confounding and reporting of results in causal inference studies

(48)  Lederer, David J a   Bell, Scott C b   Branson, Richard D c   Chalmers, James D d   Marshall, Rachel e   Maslove, David M f   Ost, David E g   Punjabi, Naresh M h   Schatz, Michael i   Smyth, Alan R j   Stewart, Paul W k   Suissa, Samy l   Adjei, Alex A m   Akdis, Cezmi A n   Azoulay, Élie o   Bakker, Jan a,p,q   Ballas, Zuhair K r   Bardin, Philip G s   Barreiro, Esther t   Bellomo, Rinaldo u   more..


Author keywords

Causality; Confounding factors; Epidemiology; Research design

Indexed keywords

CAUSAL INFERENCE; CAUSAL MODELING; CAUSALITY; CONFOUNDING VARIABLE; ECOLOGICAL FALLACY; HUMAN; INTENSIVE CARE; MEDICAL LITERATURE; REVIEW; STATISTICAL SIGNIFICANCE; ALGORITHM; METHODOLOGY; PRACTICE GUIDELINE; PUBLICATION; PULMONOLOGY; SLEEP MEDICINE; STATISTICAL MODEL;

EID: 85056625269     PISSN: 23296933     EISSN: 23256621     Source Type: Journal    
DOI: 10.1513/AnnalsATS.162erratum     Document Type: Erratum
Times cited : (523)

References (33)
  • 2
    • 84978105459 scopus 로고    scopus 로고
    • Why most clinical research is not useful
    • Ioannidis JPA. Why most clinical research is not useful. PLoS Med 2016; 13:e1002049.
    • (2016) PLoS Med , vol.13
    • Ioannidis, J.P.A.1
  • 3
    • 84946138760 scopus 로고    scopus 로고
    • Can we trust observational studies using propensity scores in the critical care literature? A systematic comparison with randomized clinical trials
    • Kitsios GD, Dahabreh IJ, Callahan S, Paulus JK, Campagna AC, Dargin JM. Can we trust observational studies using propensity scores in the critical care literature? A systematic comparison with randomized clinical trials. Crit Care Med 2015;43:1870–1879.
    • (2015) Crit Care Med , vol.43 , pp. 1870-1879
    • Kitsios, G.D.1    Dahabreh, I.J.2    Callahan, S.3    Paulus, J.K.4    Campagna, A.C.5    Dargin, J.M.6
  • 4
    • 85054233444 scopus 로고    scopus 로고
    • Clinical knowledge from observational studies: Everything you wanted to know but were afraid to ask
    • Gershon AS, Jafarzadeh SR, Wilson KC, Walkey AJ. Clinical knowledge from observational studies: everything you wanted to know but were afraid to ask. Am J Respir Crit Care Med 2018;198:859-867.
    • (2018) Am J Respir Crit Care Med , vol.198 , pp. 859-867
    • Gershon, A.S.1    Jafarzadeh, S.R.2    Wilson, K.C.3    Walkey, A.J.4
  • 5
    • 84964378350 scopus 로고    scopus 로고
    • Using big data to emulate a target trial when a randomized trial is not available
    • Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol 2016;183:758–764.
    • (2016) Am J Epidemiol , vol.183 , pp. 758-764
    • Hernán, M.A.1    Robins, J.M.2
  • 6
    • 79955071823 scopus 로고    scopus 로고
    • With great data comes great responsibility: Publishing comparative effectiveness research in epidemiology
    • Hernán MA. With great data comes great responsibility: publishing comparative effectiveness research in epidemiology. Epidemiology 2011;22:290–291.
    • (2011) Epidemiology , vol.22 , pp. 290-291
    • Hernán, M.A.1
  • 7
    • 78751611452 scopus 로고    scopus 로고
    • To explain or to predict?
    • Shmueli G. To explain or to predict? Stat Sci 2010;25:289–310.
    • (2010) Stat Sci , vol.25 , pp. 289-310
    • Shmueli, G.1
  • 9
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding vs collider-stratification bias
    • Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology 2003;14: 300–306.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 10
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999;10:37–48.
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 12
    • 79952351829 scopus 로고    scopus 로고
    • History of the modern epidemiological concept of confounding
    • Morabia A. History of the modern epidemiological concept of confounding. J Epidemiol Community Health 2011;65:297–300.
    • (2011) J Epidemiol Community Health , vol.65 , pp. 297-300
    • Morabia, A.1
  • 13
    • 67651021231 scopus 로고    scopus 로고
    • Overadjustment bias and unnecessary adjustment in epidemiologic studies
    • Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009;20:488–495.
    • (2009) Epidemiology , vol.20 , pp. 488-495
    • Schisterman, E.F.1    Cole, S.R.2    Platt, R.W.3
  • 15
    • 33646491483 scopus 로고    scopus 로고
    • Methods to adjust for bias and confounding in critical care health services research involving observational data
    • Wunsch H, Linde-Zwirble WT, Angus DC. Methods to adjust for bias and confounding in critical care health services research involving observational data. J Crit Care 2006;21:1–7.
    • (2006) J Crit Care , vol.21 , pp. 1-7
    • Wunsch, H.1    Linde-Zwirble, W.T.2    Angus, D.C.3
  • 19
    • 84984992922 scopus 로고    scopus 로고
    • To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias
    • Ding P, Miratrix LW. To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias. J Causal Inference 2015;3:41–57.
    • (2015) J Causal Inference , vol.3 , pp. 41-57
    • Ding, P.1    Miratrix, L.W.2
  • 20
    • 84873627400 scopus 로고    scopus 로고
    • The table 2 fallacy: Presenting and interpreting confounder and modifier coefficients
    • Westreich D, Greenland S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol 2013;177:292–298.
    • (2013) Am J Epidemiol , vol.177 , pp. 292-298
    • Westreich, D.1    Greenland, S.2
  • 21
    • 31844443695 scopus 로고
    • The environment and disease: Association or causation?
    • Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965;58:295–300.
    • (1965) Proc R Soc Med , vol.58 , pp. 295-300
    • Hill, A.B.1
  • 22
    • 84949641198 scopus 로고    scopus 로고
    • Exposure-wide epidemiology: Revisiting Bradford Hill
    • Ioannidis JP. Exposure-wide epidemiology: revisiting Bradford Hill. Stat Med 2016;35:1749–1762.
    • (2016) Stat Med , vol.35 , pp. 1749-1762
    • Ioannidis, J.P.1
  • 24
    • 85045201381 scopus 로고    scopus 로고
    • The proposal to lower P value thresholds to .005
    • Ioannidis JPA. The proposal to lower P value thresholds to .005. JAMA 2018;319:1429–1430.
    • (2018) JAMA , vol.319 , pp. 1429-1430
    • Ioannidis, J.P.A.1
  • 26
    • 84976291730 scopus 로고    scopus 로고
    • The ASA’s statement on P-values: Context, process, and purpose
    • Wasserstein RL, Lazar NA. The ASA’s statement on P-values: context, process, and purpose. Am Stat 2016;70:129–133.
    • (2016) Am Stat , vol.70 , pp. 129-133
    • Wasserstein, R.L.1    Lazar, N.A.2
  • 27
    • 84971612122 scopus 로고    scopus 로고
    • Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations
    • Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 2016;31:337–350.
    • (2016) Eur J Epidemiol , vol.31 , pp. 337-350
    • Greenland, S.1    Senn, S.J.2    Rothman, K.J.3    Carlin, J.B.4    Poole, C.5    Goodman, S.N.6
  • 29
    • 35848948166 scopus 로고    scopus 로고
    • The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies
    • von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007;147:573–577.
    • (2007) Ann Intern Med , vol.147 , pp. 573-577
    • Von Elm, E.1    Altman, D.G.2    Egger, M.3    Pocock, S.J.4    Gøtzsche, P.C.5    Vandenbroucke, J.P.6
  • 30
    • 35648967542 scopus 로고    scopus 로고
    • Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration
    • Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al.; STROBE initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Ann Intern Med 2007;147:W163–W194.
    • (2007) Ann Intern Med , vol.147 , pp. W163-W194
    • Vandenbroucke, J.P.1    Von Elm, E.2    Altman, D.G.3    Gøtzsche, P.C.4    Mulrow, C.D.5    Pocock, S.J.6
  • 32
    • 79954465141 scopus 로고    scopus 로고
    • Show the data, don’t conceal them
    • Drummond GB, Vowler SL. Show the data, don’t conceal them. Br J Pharmacol 2011;163:208–210.
    • (2011) Br J Pharmacol , vol.163 , pp. 208-210
    • Drummond, G.B.1    Vowler, S.L.2
  • 33
    • 84859700094 scopus 로고    scopus 로고
    • Great expectations
    • Rockman HA. Great expectations. J Clin Invest 2012;122:1133.
    • (2012) J Clin Invest , vol.122 , pp. 1133
    • Rockman, H.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.