메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Incremental network quantization: Towards lossless cnns with low-precision weights

Author keywords

[No Author keywords available]

Indexed keywords

DIGITAL ARITHMETIC; ENCODING (SYMBOLS); NEURAL NETWORKS; SIGNAL ENCODING;

EID: 85083331873     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1063)

References (26)
  • 1
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and L. Yuille Alan. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015a.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille Alan, L.5
  • 3
    • 84965117606 scopus 로고    scopus 로고
    • BinaryConnect: Training deep neural networks with binary weights during propagations
    • Matthieu Courbariaux, Bengio Yoshua, and David Jean-Pierre. Binaryconnect: Training deep neural networks with binary weights during propagations. In NIPS, 2015.
    • (2015) NIPS
    • Courbariaux, M.1    Yoshua, B.2    Jean-Pierre, D.3
  • 5
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNn
    • Ross Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 7
    • 85018895765 scopus 로고    scopus 로고
    • Dynamic network surgery for efficient dnns
    • Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In NIPS, 2016.
    • (2016) NIPS
    • Guo, Y.1    Yao, A.2    Chen, Y.3
  • 9
    • 84965140688 scopus 로고    scopus 로고
    • Learning both weights and connections for efficient neural networks
    • Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural networks. In NIPS, 2015.
    • (2015) NIPS
    • Han, S.1    Pool, J.2    Tran, J.3    Dally, W.J.4
  • 10
    • 84965175092 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
    • Song Han, Jeff Pool, John Tran, and William J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016.
    • (2016) ICLR
    • Han, S.1    Pool, J.2    Tran, J.3    Dally, W.J.4
  • 11
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Xiangyu, Z.2    Shaoqing, R.3    Jian, S.4
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Sutskever Ilya, and E. Hinton Geoffrey. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Ilya, S.2    Hinton Geoffrey, E.3
  • 14
    • 85070941712 scopus 로고    scopus 로고
    • Gradient-based learning applied to documentrecognition
    • Yann LeCun, Bottou Leon, Yoshua Bengio, and Patrick Hadner. Gradient-based learning applied to documentrecognition. In NIPS, 1998.
    • (1998) NIPS
    • LeCun, Y.1    Leon, B.2    Bengio, Y.3    Hadner, P.4
  • 16
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 18
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 19
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 20
    • 84937908919 scopus 로고    scopus 로고
    • Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights
    • Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights. In NIPS, 2014.
    • (2014) NIPS
    • Soudry, D.1    Hubara, I.2    Meir, R.3
  • 21
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation from predicting 10,000 classes. In CVPR, 2014.
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 24
    • 84911198048 scopus 로고    scopus 로고
    • DeepFace: Closing the gap to human-level performance in face verification
    • Yaniv Taigman, Ming Yang, Marc' Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Aurelio Ranzato, M.3    Wolf, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.