메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1493-1503

Resolving language and vision ambiguities together: Joint segmentation & Prepositional attachment resolution in captioned scenes

Author keywords

[No Author keywords available]

Indexed keywords

NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS; SYNTACTICS;

EID: 85072845519     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d16-1156     Document Type: Conference Paper
Times cited : (23)

References (39)
  • 1
    • 84973882952 scopus 로고    scopus 로고
    • Optimizing expected intersection-over-union with candidate-constrained CRFs
    • Faruk Ahmed, Dany Tarlow, and Dhruv Batra. 2015. Optimizing Expected Intersection-over-Union with Candidate-Constrained CRFs. In ICCV.
    • (2015) ICCV
    • Ahmed, F.1    Tarlow, D.2    Batra, D.3
  • 4
  • 6
    • 84885965403 scopus 로고    scopus 로고
    • An efficient message-passing algorithm for the M-best map problem
    • Dhruv Batra. 2012. An Efficient Message-Passing Algorithm for the M-Best MAP Problem. In UAI.
    • (2012) UAI
    • Batra, D.1
  • 7
    • 84959867661 scopus 로고    scopus 로고
    • Do you see what I mean? Visual resolution of linguistic ambiguities
    • Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz, and Shimon Ullman. 2015. Do You See What I Mean? Visual Resolution of Linguistic Ambiguities. In EMNLP.
    • (2015) EMNLP
    • Berzak, Y.1    Barbu, A.2    Harari, D.3    Katz, B.4    Ullman, S.5
  • 8
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. 2015. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In ICLR.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 9
  • 10
    • 85037338954 scopus 로고    scopus 로고
    • Generating typed dependency parses from phrase structure parses
    • Marie-Catherine De Marneffe, Bill MacCartney, and Christopher D Manning. 2006. Generating Typed Dependency Parses from Phrase Structure Parses. In LREC.
    • (2006) LREC
    • De Marneffe, M.-C.1    MacCartney, B.2    Manning, C.D.3
  • 13
    • 84887365305 scopus 로고    scopus 로고
    • A sentence is worth a thousand pixels
    • Sanja Fidler, Abhishek Sharma, and Raquel Urtasun. 2013. A Sentence is Worth a Thousand Pixels. In CVPR.
    • (2013) CVPR
    • Fidler, S.1    Sharma, A.2    Urtasun, R.3
  • 14
    • 84994153851 scopus 로고    scopus 로고
    • Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embeddings
    • Spandana Gella, Mirella Lapata, and Frank Keller. 2016. Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embeddings. In NAACL HLT.
    • (2016) NAACL HLT
    • Gella, S.1    Lapata, M.2    Keller, F.3
  • 15
    • 84973873525 scopus 로고    scopus 로고
    • A visual turing test for computer vision systems
    • Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. 2014. A Visual Turing Test for Computer Vision Systems. In PNAS.
    • (2014) PNAS
    • Geman, D.1    Geman, S.2    Hallonquist, N.3    Younes, L.4
  • 16
    • 84926335585 scopus 로고    scopus 로고
    • A systematic exploration of diversity in machine translation
    • K. Gimpel, D. Batra, C. Dyer, and G. Shakhnarovich. 2013. A Systematic Exploration of Diversity in Machine Translation. In EMNLP.
    • (2013) EMNLP
    • Gimpel, K.1    Batra, D.2    Dyer, C.3    Shakhnarovich, G.4
  • 17
    • 84959215202 scopus 로고    scopus 로고
    • DivMcuts: Faster training of structural SVMs with diverse M-best cutting-planes
    • Abner Guzman-Rivera, Pushmeet Kohli, and Dhruv Batra. 2013. DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes. In AIS-TATS.
    • (2013) AIS-TATS
    • Guzman-Rivera, A.1    Kohli, P.2    Batra, D.3
  • 18
    • 84858763935 scopus 로고    scopus 로고
    • Cascaded classification models: Combining models for holistic scene understanding
    • Geremy Heitz, Stephen Gould, Ashutosh Saxena, and Daphne Koller. 2008. Cascaded Classification Models: Combining Models for Holistic Scene Understanding. In NIPS.
    • (2008) NIPS
    • Heitz, G.1    Gould, S.2    Saxena, A.3    Koller, D.4
  • 19
    • 84941147133 scopus 로고    scopus 로고
    • Better k-best Parsing
    • Liang Huang and David Chiang. 2005. Better k-best Parsing. In IWPT, pages 53-64.
    • (2005) IWPT , pp. 53-64
    • Huang, L.1    Chiang, D.2
  • 21
    • 84911370987 scopus 로고    scopus 로고
    • What are you talking about? Text-to-image coreference
    • Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. 2014. What are you talking about? Text-to-Image Coreference. In CVPR.
    • (2014) CVPR
    • Kong, C.1    Lin, D.2    Bansal, M.3    Urtasun, R.4    Fidler, S.5
  • 22
    • 84887369150 scopus 로고    scopus 로고
    • Image retrieval with structured object queries using latent ranking SVM
    • Tian Lan, Weilong Yang, Yang Wang, and Greg Mori. 2012. Image Retrieval with Structured Object Queries Using Latent Ranking SVM. In ECCV.
    • (2012) ECCV
    • Lan, T.1    Yang, W.2    Wang, Y.3    Mori, G.4
  • 24
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A Neural-based Approach to Answering Questions about Images
    • Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. 2015. Ask Your Neurons: A Neural-based Approach to Answering Questions about Images. In ICCV.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 25
    • 33745933877 scopus 로고    scopus 로고
    • Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation
    • Talya Meltzer, Chen Yanover, and Yair Weiss. 2005. Globally Optimal Solutions for Energy Minimization in Stereo Vision Using Reweighted Belief Propagation. In ICCV.
    • (2005) ICCV
    • Meltzer, T.1    Yanover, C.2    Weiss, Y.3
  • 26
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. In ICLR.
    • (2013) ICLR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 29
    • 84937919648 scopus 로고    scopus 로고
    • Submodular meets Structured: Finding diverse subsets in exponentially-large structured item sets
    • Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. 2014. Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets. In NIPS.
    • (2014) NIPS
    • Prasad, A.1    Jegelka, S.2    Batra, D.3
  • 30
    • 84911413891 scopus 로고    scopus 로고
    • Empirical minimum Bayes risk prediction: How to extract an extra few% performance from vision models with just three more parameters
    • Vittal Premachandran, Daniel Tarlow, and Dhruv Batra. 2014. Empirical Minimum Bayes Risk Prediction: How to extract an extra few% performance from vision models with just three more parameters. In CVPR.
    • (2014) CVPR
    • Premachandran, V.1    Tarlow, D.2    Batra, D.3
  • 33
    • 84959206846 scopus 로고    scopus 로고
    • Active learning for structured probabilistic models with histogram approximation
    • Qing Sun, Ankit Laddha, and Dhruv Batra. 2015. Active Learning for Structured Probabilistic Models With Histogram Approximation. In CVPR.
    • (2015) CVPR
    • Sun, Q.1    Laddha, A.2    Batra, D.3
  • 34
    • 43249091850 scopus 로고    scopus 로고
    • A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
    • Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, and Carsten Rother. 2008. A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. PAMI, 30(6).
    • (2008) PAMI , vol.30 , Issue.6
    • Szeliski, R.1    Zabih, R.2    Scharstein, D.3    Veksler, O.4    Kolmogorov, V.5    Agarwala, A.6    Tappen, M.7    Rother, C.8
  • 35
    • 85061915008 scopus 로고    scopus 로고
    • CiDer: Consensus-based Image Description Evaluation
    • Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2014. CIDEr: Consensus-based Image Description Evaluation. In CVPR.
    • (2014) CVPR
    • Vedantam, R.1    Lawrence Zitnick, C.2    Parikh, D.3
  • 36
    • 84946747440 scopus 로고    scopus 로고
    • Show and Tell: A neural image caption generator
    • Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and Tell: A Neural Image Caption Generator. In CVPR.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 37
    • 84887357627 scopus 로고    scopus 로고
    • Discriminative Re-ranking of Diverse Segmentations
    • Payman Yadollahpour, Dhruv Batra, and Greg Shakhnarovich. 2013. Discriminative Re-ranking of Diverse Segmentations. In CVPR.
    • (2013) CVPR
    • Yadollahpour, P.1    Batra, D.2    Shakhnarovich, G.3
  • 39
    • 84973892583 scopus 로고    scopus 로고
    • Visual madlibs: Fill in the blank description generation and question answering
    • Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg. 2015. Visual Madlibs: Fill in the Blank Description Generation and Question Answering. In ICCV.
    • (2015) ICCV
    • Yu, L.1    Park, E.2    Berg, A.C.3    Berg, T.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.