메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1043-1050

Empirical minimum bayes risk prediction: How to extract an extra few % performance from vision models with just three more parameters

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION; PATTERN RECOGNITION;

EID: 84911413891     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.137     Document Type: Conference Paper
Times cited : (20)

References (32)
  • 1
    • 24344434731 scopus 로고    scopus 로고
    • Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities
    • August
    • A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. IEEE Trans. Pattern Anal. Mach. Intell., 27:1239-1253, August 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1239-1253
    • Barbu, A.1    Zhu, S.-C.2
  • 2
    • 84885965403 scopus 로고    scopus 로고
    • An efficient message-passing algorithm for the M-best MAP problem
    • D. Batra. An Efficient Message-Passing Algorithm for the M-Best MAP Problem. In Uncertainty in Artificial Intelligence, 2012.
    • (2012) Uncertainty in Artificial Intelligence
    • Batra, D.1
  • 4
    • 84867872703 scopus 로고    scopus 로고
    • Semantic segmentation with second-order pooling
    • J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, pages 430-443, 2012.
    • (2012) ECCV , pp. 430-443
    • Carreira, J.1    Caseiro, R.2    Batista, J.3    Sminchisescu, C.4
  • 5
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Carreira, J.1    Sminchisescu, C.2
  • 9
    • 84877765715 scopus 로고    scopus 로고
    • Multiple choice learning: Learning to produce multiple structured outputs
    • A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple Choice Learning: Learning to Produce Multiple Structured Outputs. In Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Guzman-Rivera, A.1    Batra, D.2    Kohli, P.3
  • 10
    • 84911443590 scopus 로고    scopus 로고
    • Efficiently enforcing diversity in multi-output structured prediction
    • A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar. Efficiently enforcing diversity in multi-output structured prediction. In AISTATS, 2014.
    • (2014) AISTATS
    • Guzman-Rivera, A.1    Kohli, P.2    Batra, D.3    Rutenbar, R.4
  • 11
    • 0000364355 scopus 로고
    • Some network flow problems solved with pseudo-boolean programming
    • P. Hammer. Some network flow problems solved with pseudo-boolean programming. Operations Research, 13:388-399, 1965.
    • (1965) Operations Research , vol.13 , pp. 388-399
    • Hammer, P.1
  • 13
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? PAMI, 26(2):147-159, 2004.
    • (2004) PAMI , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 16
    • 0006776658 scopus 로고    scopus 로고
    • An efficient algorithm for finding the M most probable configurations in probabilistic expert systems
    • D. Nilsson. An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing, 8:159-173, 1998. 10.1023/A:1008990218483.
    • (1998) Statistics and Computing , vol.8 , pp. 159-173
    • Nilsson, D.1
  • 17
    • 84856654560 scopus 로고    scopus 로고
    • Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
    • Nov.
    • G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, pages 193-200, Nov. 2011.
    • (2011) ICCV , pp. 193-200
    • Papandreou, G.1    Yuille, A.2
  • 18
    • 84856682999 scopus 로고    scopus 로고
    • N-best maximal decoders for part models
    • D. Park and D. Ramanan. N-best maximal decoders for part models. In ICCV, 2011.
    • (2011) ICCV
    • Park, D.1    Ramanan, D.2
  • 19
    • 0020276268 scopus 로고
    • Reverend bayes on inference engines: A distributed hierarchical approach
    • J. Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In AAAI, 1982.
    • (1982) AAAI
    • Pearl, J.1
  • 20
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances In Large Margin Classifiers, 1999.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 21
    • 80054894097 scopus 로고    scopus 로고
    • 4: Exploring multiple solutions in graphical models by cluster sampling
    • J. Porway and S.-C. Zhu. C4: Exploring multiple solutions in graphical models by cluster sampling. PAMI, 33(9):1713-1727, 2011.
    • (2011) PAMI , vol.33 , Issue.9 , pp. 1713-1727
    • Porway, J.1    Zhu, S.-C.2
  • 22
    • 0028483915 scopus 로고
    • Finding MAPs for belief networks is NP-hard
    • August
    • S. E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68(2):399-410, August 1994.
    • (1994) Artificial Intelligence , vol.68 , Issue.2 , pp. 399-410
    • Shimony, S.E.1
  • 23
    • 84877736193 scopus 로고    scopus 로고
    • Structured output learning with high order loss functions
    • D. Tarlow and R. S. Zemel. Structured output learning with high order loss functions. In AISTATS, 2012.
    • (2012) AISTATS
    • Tarlow, D.1    Zemel, R.S.2
  • 25
    • 0036566199 scopus 로고    scopus 로고
    • Image segmentation by data-driven markov chain monte carlo
    • May
    • Z. Tu and S.-C. Zhu. Image segmentation by data-driven Markov Chain Monte Carlo. IEEE Trans. Pattern Anal. Mach. Intell., 24:657-673, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 657-673
    • Tu, Z.1    Zhu, S.-C.2
  • 26
    • 49249151236 scopus 로고
    • The complexity of computing the permanent
    • L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189-201, 1979.
    • (1979) Theoretical Computer Science , vol.8 , Issue.2 , pp. 189-201
    • Valiant, L.1
  • 28
    • 84887357627 scopus 로고    scopus 로고
    • Discriminative re-ranking of diverse segmentations
    • P. Yadollahpour, D. Batra, and G. Shakhnarovich. Discriminative re-ranking of diverse segmentations. In CVPR, 2013.
    • (2013) CVPR
    • Yadollahpour, P.1    Batra, D.2    Shakhnarovich, G.3
  • 29
    • 84911455115 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • To Appear
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. PAMI, To Appear.
    • PAMI
    • Yang, Y.1    Ramanan, D.2
  • 30
    • 84860606249 scopus 로고    scopus 로고
    • Finding the M most probable configurations using loopy belief propagation
    • C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy belief propagation. In NIPS, 2003.
    • (2003) NIPS
    • Yanover, C.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.