-
1
-
-
24344434731
-
Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities
-
August
-
A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. IEEE Trans. Pattern Anal. Mach. Intell., 27:1239-1253, August 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 1239-1253
-
-
Barbu, A.1
Zhu, S.-C.2
-
2
-
-
84885965403
-
An efficient message-passing algorithm for the M-best MAP problem
-
D. Batra. An Efficient Message-Passing Algorithm for the M-Best MAP Problem. In Uncertainty in Artificial Intelligence, 2012.
-
(2012)
Uncertainty in Artificial Intelligence
-
-
Batra, D.1
-
4
-
-
84867872703
-
Semantic segmentation with second-order pooling
-
J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, pages 430-443, 2012.
-
(2012)
ECCV
, pp. 430-443
-
-
Carreira, J.1
Caseiro, R.2
Batista, J.3
Sminchisescu, C.4
-
5
-
-
77956008665
-
Constrained parametric min-cuts for automatic object segmentation
-
J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, 2010.
-
(2010)
CVPR
-
-
Carreira, J.1
Sminchisescu, C.2
-
8
-
-
77951298115
-
The Pascal Visual Object Classes (VOC) challenge
-
June
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes (VOC) Challenge. IJCV, 88(2):303-338, June 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
9
-
-
84877765715
-
Multiple choice learning: Learning to produce multiple structured outputs
-
A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple Choice Learning: Learning to Produce Multiple Structured Outputs. In Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Guzman-Rivera, A.1
Batra, D.2
Kohli, P.3
-
10
-
-
84911443590
-
Efficiently enforcing diversity in multi-output structured prediction
-
A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar. Efficiently enforcing diversity in multi-output structured prediction. In AISTATS, 2014.
-
(2014)
AISTATS
-
-
Guzman-Rivera, A.1
Kohli, P.2
Batra, D.3
Rutenbar, R.4
-
11
-
-
0000364355
-
Some network flow problems solved with pseudo-boolean programming
-
P. Hammer. Some network flow problems solved with pseudo-boolean programming. Operations Research, 13:388-399, 1965.
-
(1965)
Operations Research
, vol.13
, pp. 388-399
-
-
Hammer, P.1
-
13
-
-
0742286180
-
What energy functions can be minimized via graph cuts?
-
V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? PAMI, 26(2):147-159, 2004.
-
(2004)
PAMI
, vol.26
, Issue.2
, pp. 147-159
-
-
Kolmogorov, V.1
Zabih, R.2
-
16
-
-
0006776658
-
An efficient algorithm for finding the M most probable configurations in probabilistic expert systems
-
D. Nilsson. An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing, 8:159-173, 1998. 10.1023/A:1008990218483.
-
(1998)
Statistics and Computing
, vol.8
, pp. 159-173
-
-
Nilsson, D.1
-
17
-
-
84856654560
-
Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
-
Nov.
-
G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, pages 193-200, Nov. 2011.
-
(2011)
ICCV
, pp. 193-200
-
-
Papandreou, G.1
Yuille, A.2
-
18
-
-
84856682999
-
N-best maximal decoders for part models
-
D. Park and D. Ramanan. N-best maximal decoders for part models. In ICCV, 2011.
-
(2011)
ICCV
-
-
Park, D.1
Ramanan, D.2
-
19
-
-
0020276268
-
Reverend bayes on inference engines: A distributed hierarchical approach
-
J. Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In AAAI, 1982.
-
(1982)
AAAI
-
-
Pearl, J.1
-
20
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances In Large Margin Classifiers, 1999.
-
(1999)
Advances in Large Margin Classifiers
-
-
Platt, J.C.1
-
21
-
-
80054894097
-
4: Exploring multiple solutions in graphical models by cluster sampling
-
J. Porway and S.-C. Zhu. C4: Exploring multiple solutions in graphical models by cluster sampling. PAMI, 33(9):1713-1727, 2011.
-
(2011)
PAMI
, vol.33
, Issue.9
, pp. 1713-1727
-
-
Porway, J.1
Zhu, S.-C.2
-
22
-
-
0028483915
-
Finding MAPs for belief networks is NP-hard
-
August
-
S. E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68(2):399-410, August 1994.
-
(1994)
Artificial Intelligence
, vol.68
, Issue.2
, pp. 399-410
-
-
Shimony, S.E.1
-
23
-
-
84877736193
-
Structured output learning with high order loss functions
-
D. Tarlow and R. S. Zemel. Structured output learning with high order loss functions. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Tarlow, D.1
Zemel, R.S.2
-
24
-
-
42549161120
-
Softrank: Optimizing non-smooth rank metrics
-
ACM
-
M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics. In Proceedings of the 2008 International Conference on Web Search and Data Mining, pages 77-86. ACM, 2008.
-
(2008)
Proceedings of the 2008 International Conference on Web Search and Data Mining
, pp. 77-86
-
-
Taylor, M.1
Guiver, J.2
Robertson, S.3
Minka, T.4
-
25
-
-
0036566199
-
Image segmentation by data-driven markov chain monte carlo
-
May
-
Z. Tu and S.-C. Zhu. Image segmentation by data-driven Markov Chain Monte Carlo. IEEE Trans. Pattern Anal. Mach. Intell., 24:657-673, May 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, pp. 657-673
-
-
Tu, Z.1
Zhu, S.-C.2
-
26
-
-
49249151236
-
The complexity of computing the permanent
-
L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189-201, 1979.
-
(1979)
Theoretical Computer Science
, vol.8
, Issue.2
, pp. 189-201
-
-
Valiant, L.1
-
29
-
-
84911455115
-
Articulated pose estimation with flexible mixtures-of-parts
-
To Appear
-
Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. PAMI, To Appear.
-
PAMI
-
-
Yang, Y.1
Ramanan, D.2
-
30
-
-
84860606249
-
Finding the M most probable configurations using loopy belief propagation
-
C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy belief propagation. In NIPS, 2003.
-
(2003)
NIPS
-
-
Yanover, C.1
Weiss, Y.2
|