메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1100-1111

A systematic exploration of diversity in machine translation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION;

EID: 84926335585     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (95)

References (63)
  • 1
    • 84859097957 scopus 로고    scopus 로고
    • Goodness: A method for measuring machine translation confidence
    • N. Bach, F. Huang, and Y. Al-Onaizan. 2011. Goodness: A method for measuring machine translation confidence. In Proc. of ACL.
    • (2011) Proc. of ACL
    • Bach, N.1    Huang, F.2    Al-Onaizan, Y.3
  • 5
  • 7
    • 84926301111 scopus 로고    scopus 로고
    • Positive diversity tuning for machine translation system combination
    • D. Cer, C. D. Manning, and D. Jurafsky. 2013. Positive diversity tuning for machine translation system combination. In Proc. of WMT.
    • (2013) Proc. of WMT
    • Cer, D.1    Manning, C.D.2    Jurafsky, D.3
  • 8
    • 85120053800 scopus 로고    scopus 로고
    • Optimizing Chinese word segmentation for machine translation performance
    • P. Chang, M. Galley, and C. D. Manning. 2008. Optimizing Chinese word segmentation for machine translation performance. In Proc. of WMT.
    • (2008) Proc. of WMT
    • Chang, P.1    Galley, M.2    Manning, C.D.3
  • 9
    • 84859885240 scopus 로고    scopus 로고
    • Coarse-to-fine n-best parsing and maxent discriminative reranking
    • E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best parsing and maxent discriminative reranking. In Proc. of ACL.
    • (2005) Proc. of ACL
    • Charniak, E.1    Johnson, M.2
  • 10
    • 80053280250 scopus 로고    scopus 로고
    • Minimum error rate training by sampling the translation lattice
    • S. Chatterjee and N. Cancedda. 2010. Minimum error rate training by sampling the translation lattice. In Proc. of EMNLP.
    • (2010) Proc. of EMNLP
    • Chatterjee, S.1    Cancedda, N.2
  • 12
    • 34347360650 scopus 로고    scopus 로고
    • Hierarchical phrase-based translation
    • D. Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics, 33(2).
    • (2007) Computational Linguistics , vol.33 , Issue.2
    • Chiang, D.1
  • 13
    • 33646407289 scopus 로고    scopus 로고
    • Discriminative reranking for natural language parsing
    • M. Collins and T. Koo. 2005. Discriminative reranking for natural language parsing. Computational Linguistics, 31(1).
    • (2005) Computational Linguistics , vol.31 , Issue.1
    • Collins, M.1    Koo, T.2
  • 14
    • 0040044720 scopus 로고    scopus 로고
    • Discriminative reranking for natural language parsing
    • M. Collins. 2000. Discriminative reranking for natural language parsing. In Proc. of ICML.
    • (2000) Proc. of ICML
    • Collins, M.1
  • 15
    • 85018094657 scopus 로고    scopus 로고
    • Fast consensus decoding over translation forests
    • J. DeNero, D. Chiang, and K. Knight. 2009. Fast consensus decoding over translation forests. In Proc. of ACL.
    • (2009) Proc. of ACL
    • DeNero, J.1    Chiang, D.2    Knight, K.3
  • 16
    • 84876786417 scopus 로고    scopus 로고
    • Trait-based hypothesis selection for machine translation
    • J. Devlin and S. Matsoukas. 2012. Trait-based hypothesis selection for machine translation. In Proc. of NAACL.
    • (2012) Proc. of NAACL
    • Devlin, J.1    Matsoukas, S.2
  • 17
    • 84858387484 scopus 로고    scopus 로고
    • Using a maximum entropy model to build segmentation lattices for MT
    • C. Dyer. 2009. Using a maximum entropy model to build segmentation lattices for MT. In Proc. of HLT-NAACL.
    • (2009) Proc. of HLT-NAACL
    • Dyer, C.1
  • 19
    • 80053379378 scopus 로고    scopus 로고
    • Solving the problem of cascading errors: Approximate Bayesian inference for linguistic annotation pipelines
    • J. R. Finkel, C. D. Manning, and A. Y. Ng. 2006. Solving the problem of cascading errors: Approximate Bayesian inference for linguistic annotation pipelines. In Proc. of EMNLP.
    • (2006) Proc. of EMNLP
    • Finkel, J.R.1    Manning, C.D.2    Ng, A.Y.3
  • 21
    • 84883416233 scopus 로고    scopus 로고
    • Discovering diverse and salient threads in document collections
    • J. Gillenwater, A. Kulesza, and B. Taskar. 2012. Discovering diverse and salient threads in document collections. In Proc. of EMNLP.
    • (2012) Proc. of EMNLP
    • Gillenwater, J.1    Kulesza, A.2    Taskar, B.3
  • 22
    • 85044881985 scopus 로고    scopus 로고
    • Combining machine translation output with open source: The carnegie mellon multi-engine machine translation scheme
    • K. Heafield and A. Lavie. 2010a. Combining machine translation output with open source: The Carnegie Mellon multi-engine machine translation scheme. The Prague Bulletin of Mathematical Linguistics, 93.
    • (2010) The Prague Bulletin of Mathematical Linguistics , pp. 93
    • Heafield, K.1    Lavie, A.2
  • 23
    • 84857538749 scopus 로고    scopus 로고
    • Voting on n-grams for machine translation system combination
    • K. Heafield and A. Lavie. 2010b. Voting on n-grams for machine translation system combination. In Proc. of AMTA.
    • (2010) Proc. of AMTA
    • Heafield, K.1    Lavie, A.2
  • 24
    • 84982842007 scopus 로고    scopus 로고
    • Kenlm: Faster and smaller language model queries
    • K. Heafield. 2011. Kenlm: Faster and smaller language model queries. In Proc. of WMT.
    • (2011) Proc. of WMT
    • Heafield, K.1
  • 25
    • 84858056555 scopus 로고    scopus 로고
    • Combination of machine translation systems via hypothesis selection from combined n-best lists
    • A. Hildebrand and S. Vogel. 2008. Combination of machine translation systems via hypothesis selection from combined n-best lists. In Proc. of AMTA.
    • (2008) Proc. of AMTA
    • Hildebrand, A.1    Vogel, S.2
  • 26
    • 85133180012 scopus 로고    scopus 로고
    • A unified framework for phrase-based, hierarchical, and syntax-based statistical machine translation
    • H. Hoang, P. Koehn, and A. Lopez. 2009. A Unified Framework for Phrase-Based, Hierarchical, and Syntax-Based Statistical Machine Translation. In Proc. of IWSLT.
    • (2009) Proc. of IWSLT
    • Hoang, H.1    Koehn, P.2    Lopez, A.3
  • 28
    • 84859887879 scopus 로고    scopus 로고
    • Forest reranking: Discriminative parsing with non-local features
    • L. Huang. 2008. Forest reranking: Discriminative parsing with non-local features. In Proc. of ACL.
    • (2008) Proc. of ACL
    • Huang, L.1
  • 29
    • 69549111057 scopus 로고    scopus 로고
    • Cuttingplane training of structural SVMs
    • T. Joachims, T. Finley, and C. Yu. 2009. Cuttingplane training of structural SVMs. Machine Learning, 77(1).
    • (2009) Machine Learning , vol.77 , Issue.1
    • Joachims, T.1    Finley, T.2    Yu, C.3
  • 32
    • 84855646585 scopus 로고    scopus 로고
    • Enabling monolingual translators: Postediting vs. Options
    • P. Koehn. 2010. Enabling monolingual translators: Postediting vs. options. In Proc. of NAACL.
    • (2010) Proc. of NAACL
    • Koehn, P.1
  • 33
    • 85011825039 scopus 로고    scopus 로고
    • Comparing human perceptions of post-editing effort with post-editing operations
    • M. Koponen. 2012. Comparing human perceptions of post-editing effort with post-editing operations. In Proc. of WMT.
    • (2012) Proc. of WMT
    • Koponen, M.1
  • 34
    • 85161965416 scopus 로고    scopus 로고
    • Structured determinan-tal point processes
    • A. Kulesza and B. Taskar. 2010. Structured determinan-tal point processes. In Proc. of NIPS.
    • (2010) Proc. of NIPS
    • Kulesza, A.1    Taskar, B.2
  • 35
    • 80053152925 scopus 로고    scopus 로고
    • Learning determinantal point processes
    • A. Kulesza and B. Taskar. 2011. Learning determinantal point processes. In Proc. of UAI.
    • (2011) Proc. of UAI
    • Kulesza, A.1    Taskar, B.2
  • 36
    • 85117703506 scopus 로고    scopus 로고
    • Minimum bayes-risk decoding for statistical machine translation
    • S. Kumar and W. Byrne. 2004. Minimum bayes-risk decoding for statistical machine translation. In Proc. of HLT-NAACL.
    • (2004) Proc. of HLT-NAACL
    • Kumar, S.1    Byrne, W.2
  • 37
    • 84859910183 scopus 로고    scopus 로고
    • Efficient minimum error rate training and minimum bayes-risk decoding for translation hypergraphs and lattices
    • S. Kumar, W. Macherey, C. Dyer, and F. Och. 2009. Efficient minimum error rate training and minimum Bayes-risk decoding for translation hypergraphs and lattices. In Proc. of ACL-IJCNLP.
    • (2009) Proc. of ACL-IJCNLP
    • Kumar, S.1    Macherey, W.2    Dyer, C.3    Och, F.4
  • 39
    • 85186084456 scopus 로고    scopus 로고
    • Variational decoding for statistical machine translation
    • Z. Li, J. Eisner, and S. Khudanpur. 2009. Variational decoding for statistical machine translation. In Proc. of ACL.
    • (2009) Proc. of ACL
    • Li, Z.1    Eisner, J.2    Khudanpur, S.3
  • 41
    • 85037334394 scopus 로고    scopus 로고
    • Orange: A method for evaluating automatic evaluation metrics for machine translation
    • C. Lin and F. J. Och. 2004. Orange: a method for evaluating automatic evaluation metrics for machine translation. In Proc. of COLING.
    • (2004) Proc. of COLING
    • Lin, C.1    Och, F.J.2
  • 42
    • 67149133490 scopus 로고    scopus 로고
    • An empirical study on computing consensus translations from multiple machine translation systems
    • W. Macherey and F. J. Och. 2007. An empirical study on computing consensus translations from multiple machine translation systems. In Proc. of EMNLP-CoNLL.
    • (2007) Proc. of EMNLP-CoNLL
    • Macherey, W.1    Och, F.J.2
  • 43
    • 80053350863 scopus 로고    scopus 로고
    • Lattice-based minimum error rate training for statistical machine translation
    • W. Macherey, F. J. Och, I. Thayer, and J. Uszkoreit. 2008. Lattice-based minimum error rate training for statistical machine translation. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Macherey, W.1    Och, F.J.2    Thayer, I.3    Uszkoreit, J.4
  • 44
    • 85101305674 scopus 로고    scopus 로고
    • Discriminative training and maximum entropy models for statistical machine translation
    • F. J. Och and H. Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation. In Proc. of ACL.
    • (2002) Proc. of ACL
    • Och, F.J.1    Ney, H.2
  • 45
    • 0042879653 scopus 로고    scopus 로고
    • A systematic comparison of various statistical alignment models
    • F. J. Och and H. Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1).
    • (2003) Computational Linguistics , vol.29 , Issue.1
    • Och, F.J.1    Ney, H.2
  • 47
    • 22944447077 scopus 로고    scopus 로고
    • Minimum error rate training for statistical machine translation
    • F. J. Och. 2003. Minimum error rate training for statistical machine translation. In Proc. of ACL.
    • (2003) Proc. of ACL
    • Och, F.J.1
  • 48
    • 85133336275 scopus 로고    scopus 로고
    • BLEU: A method for automatic evaluation of machine translation
    • K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proc. of ACL.
    • (2002) Proc. of ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.J.4
  • 49
    • 84878194222 scopus 로고    scopus 로고
    • Large-scale syntactic language modeling with treelets
    • A. Pauls and D. Klein. 2012. Large-scale syntactic language modeling with treelets. In Proc. of ACL.
    • (2012) Proc. of ACL
    • Pauls, A.1    Klein, D.2
  • 51
    • 85123782758 scopus 로고    scopus 로고
    • An SVM-based voting algorithm with application to parse reranking
    • L. Shen and A. K. Joshi. 2003. An SVM-based voting algorithm with application to parse reranking. In Proc. of CoNLL.
    • (2003) Proc. of CoNLL
    • Shen, L.1    Joshi, A.K.2
  • 52
    • 85024106824 scopus 로고    scopus 로고
    • Discriminative reranking for machine translation
    • L. Shen, A. Sarkar, and F. J. Och. 2004. Discriminative reranking for machine translation. In Proc. of HLT-NAACL.
    • (2004) Proc. of HLT-NAACL
    • Shen, L.1    Sarkar, A.2    Och, F.J.3
  • 54
    • 84855681615 scopus 로고    scopus 로고
    • Exploiting objective annotations for measuring translation post-editing effort
    • L. Specia. 2011. Exploiting objective annotations for measuring translation post-editing effort. In Proc. of EAMT.
    • (2011) Proc. of EAMT
    • Specia, L.1
  • 55
    • 84891308106 scopus 로고    scopus 로고
    • SRILM - An extensible language modeling toolkit
    • A. Stolcke. 2002. SRILM - an extensible language modeling toolkit. In Proc. of ICSLP.
    • (2002) Proc. of ICSLP
    • Stolcke, A.1
  • 56
    • 84855653267 scopus 로고    scopus 로고
    • Correlation between automatic evaluation metric scores, post-editing speed, and some other factors
    • M. Tatsumi. 2009. Correlation between automatic evaluation metric scores, post-editing speed, and some other factors. In Proc. of MT Summit XII.
    • (2009) Proc. of MT Summit XII
    • Tatsumi, M.1
  • 58
    • 80053375451 scopus 로고    scopus 로고
    • Lattice minimum bayes-risk decoding for statistical machine translation
    • R. Tromble, S. Kumar, F. J. Och, and W. Macherey. 2008. Lattice Minimum Bayes-Risk decoding for statistical machine translation. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Tromble, R.1    Kumar, S.2    Och, F.J.3    Macherey, W.4
  • 59
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. 2005. Large margin methods for structured and interdependent output variables. JMLR, 6.
    • (2005) JMLR , pp. 6
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 61
    • 0026187945 scopus 로고
    • The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression
    • I. H. Witten and T. C. Bell. 1991. The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. IEEE Transactions on Information Theory, 37(4).
    • (1991) IEEE Transactions on Information Theory , vol.37 , Issue.4
    • Witten, I.H.1    Bell, T.C.2
  • 62
    • 84884907416 scopus 로고    scopus 로고
    • Bagging and boosting statistical machine translation systems
    • T. Xiao, J. Zhu, and T. Liu. 2013. Bagging and boosting statistical machine translation systems. Artif. Intell., 195.
    • (2013) Artif. Intell. , pp. 195
    • Xiao, T.1    Zhu, J.2    Liu, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.