-
1
-
-
84885965403
-
An efficient message-passing algorithm for the M-best MAP problem
-
D. Batra. An Efficient Message-Passing Algorithm for the M-Best MAP Problem. In UAI, 2012.
-
(2012)
UAI
-
-
Batra, D.1
-
3
-
-
0035509961
-
Efficient approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih. Efficient approximate energy minimization via graph cuts. PAMI, 20(12):1222-1239, 2001.
-
(2001)
PAMI
, vol.20
, Issue.12
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
4
-
-
84871947114
-
A tight (1/2) linear-time approximation to unconstrained submodular maximization
-
N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight (1/2) linear-time approximation to unconstrained submodular maximization. In FOCS, 2012.
-
(2012)
FOCS
-
-
Buchbinder, N.1
Feldman, M.2
Naor, J.3
Schwartz, R.4
-
6
-
-
84867872703
-
Semantic segmentation with second-order pooling
-
J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, pages 430-443, 2012.
-
(2012)
ECCV
, pp. 430-443
-
-
Carreira, J.1
Caseiro, R.2
Batista, J.3
Sminchisescu, C.4
-
7
-
-
84937835781
-
Computing the m most probable modes of a graphical model
-
C. Chen, V. Kolmogorov, Y. Zhu, D. Metaxas, and C. H. Lampert. Computing the m most probable modes of a graphical model. In AISTATS, 2013.
-
(2013)
AISTATS
-
-
Chen, C.1
Kolmogorov, V.2
Zhu, Y.3
Metaxas, D.4
Lampert, C.H.5
-
8
-
-
84937885795
-
Mode estimation for high dimensional discrete tree graphical models
-
C. Chen, H. Liu, D. Metaxas, and T. Zhao. Mode estimation for high dimensional discrete tree graphical models. In NIPS, 2014.
-
(2014)
NIPS
-
-
Chen, C.1
Liu, H.2
Metaxas, D.3
Zhao, T.4
-
9
-
-
77956006935
-
Fast approximate energy minimization with label costs
-
A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast approximate energy minimization with label costs. In CVPR, pages 2173-2180, 2010.
-
(2010)
CVPR
, pp. 2173-2180
-
-
Delong, A.1
Osokin, A.2
Isack, H.N.3
Boykov, Y.4
-
12
-
-
46749125782
-
Maximizing non-monotone submodular functions
-
U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions. In FOCS, 2007. ISBN 0-7695-3010-9.
-
(2007)
FOCS
-
-
Feige, U.1
Mirrokni, V.S.2
Vondrak, J.3
-
14
-
-
84877765715
-
Multiple choice learning: Learning to produce multiple structured outputs
-
A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple Choice Learning: Learning to Produce Multiple Structured Outputs. In Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Guzman-Rivera, A.1
Batra, D.2
Kohli, P.3
-
15
-
-
84911443590
-
Efficiently enforcing diversity in multi-output structured prediction
-
A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar. Efficiently enforcing diversity in multi-output structured prediction. In AISTATS, 2014.
-
(2014)
AISTATS
-
-
Guzman-Rivera, A.1
Kohli, P.2
Batra, D.3
Rutenbar, R.4
-
16
-
-
80052906787
-
Submodularity beyond submodular energies: Coupling edges in graph cuts
-
S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: Coupling edges in graph cuts. In CVPR, 2011.
-
(2011)
CVPR
-
-
Jegelka, S.1
Bilmes, J.2
-
18
-
-
77956004109
-
Energy minimization for linear envelope MRFs
-
P. Kohli and M. P. Kumar. Energy minimization for linear envelope MRFs. In CVPR, 2010.
-
(2010)
CVPR
-
-
Kohli, P.1
Kumar, M.P.2
-
19
-
-
84887360598
-
A principled deep random field model for image segmentation
-
P. Kohli, A. Osokin, and S. Jegelka. A principled deep random field model for image segmentation. In CVPR, 2013.
-
(2013)
CVPR
-
-
Kohli, P.1
Osokin, A.2
Jegelka, S.3
-
20
-
-
0742286180
-
What energy functions can be minimized via graph cuts?
-
V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? PAMI, 26(2): 147-159, 2004.
-
(2004)
PAMI
, vol.26
, Issue.2
, pp. 147-159
-
-
Kolmogorov, V.1
Zabih, R.2
-
21
-
-
84937865591
-
Submodularity in machine learning: New directions
-
A. Krause and S. Jegelka. Submodularity in machine learning: New directions. ICML Tutorial, 2013.
-
(2013)
ICML Tutorial
-
-
Krause, A.1
Jegelka, S.2
-
22
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
-
A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9:235-284, 2008.
-
(2008)
JMLR
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
23
-
-
85161965416
-
Structured determinantal point processes
-
A. Kulesza and B. Taskar. Structured determinantal point processes. In Proc. NIPS, 2010.
-
(2010)
Proc. NIPS
-
-
Kulesza, A.1
Taskar, B.2
-
24
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.C.N.3
-
25
-
-
35148893484
-
A tutorial on energy-based learning
-
MIT Press
-
Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based learning. In Predicting Structured Data. MIT Press, 2006.
-
(2006)
Predicting Structured Data
-
-
LeCun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.5
-
26
-
-
84859070008
-
A class of submodular functions for document summarization
-
H. Lin and J. Bilmes. A class of submodular functions for document summarization. In ACL, 2011.
-
(2011)
ACL
-
-
Lin, H.1
Bilmes, J.2
-
27
-
-
0000095809
-
An analysis of approximations for maximizing submodular set functions
-
G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265-294, 1978.
-
(1978)
Mathematical Programming
, vol.14
, Issue.1
, pp. 265-294
-
-
Nemhauser, G.1
Wolsey, L.2
Fisher, M.3
-
28
-
-
84856682999
-
N-best maximal decoders for part models
-
D. Park and D. Ramanan. N-best maximal decoders for part models. In ICCV, 2011.
-
(2011)
ICCV
-
-
Park, D.1
Ramanan, D.2
-
29
-
-
85047019092
-
An online algorithm for maximizing submodular functions
-
M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions. In NIPS, 2008.
-
(2008)
NIPS
-
-
Streeter, M.1
Golovin, D.2
-
30
-
-
80053538440
-
HOP-MAP: Efficient message passing with high order potentials
-
D. Tarlow, I. E. Givoni, and R. S. Zemel. HOP-MAP: Efficient message passing with high order potentials. In AISTATS, pages 812-819, 2010.
-
(2010)
AISTATS
, pp. 812-819
-
-
Tarlow, D.1
Givoni, I.E.2
Zemel, R.S.3
-
32
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
33
-
-
2142812371
-
Robust real-time face detection
-
May
-
P. Viola and M. J. Jones. Robust real-time face detection. Int. J. Comput. Vision, 57(2):137-154, May 2004. ISSN 0920-5691.
-
(2004)
Int. J. Comput. Vision
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.1
Jones, M.J.2
-
34
-
-
84860606249
-
Finding the m most probable configurations using loopy belief propagation
-
C. Yanover and Y. Weiss. Finding the m most probable configurations using loopy belief propagation. In NIPS, 2003.
-
(2003)
NIPS
-
-
Yanover, C.1
Weiss, Y.2
|