메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 3612-3621

Active learning for structured probabilistic models with histogram approximation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; GRAPHIC METHODS; IMAGE SEGMENTATION;

EID: 84959206846     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298984     Document Type: Conference Paper
Times cited : (36)

References (65)
  • 1
    • 51949088643 scopus 로고    scopus 로고
    • Im2gps: Estimating geographic information from a single image
    • J. Hays and A. A. Efros, "im2gps: estimating geographic information from a single image," in CVPR, 2008
    • (2008) CVPR
    • Hays, J.1    Efros, A.A.2
  • 2
    • 77955988502 scopus 로고    scopus 로고
    • The role of features, algorithms and data in visual recognition
    • D. Parikh and C. Zitnick, "The role of features, algorithms and data in visual recognition," in CVPR, 2010
    • (2010) CVPR
    • Parikh, D.1    Zitnick, C.2
  • 3
    • 84898436991 scopus 로고    scopus 로고
    • Do we need more training data or better models for object detection
    • X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes, "Do we need more training data or better models for object detection," in BMVC, 2012
    • (2012) BMVC
    • Zhu, X.1    Vondrick, C.2    Ramanan, D.3    Fowlkes, C.4
  • 8
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and variational inference," Foundations and Trends in Machine Learning, vol. 1, no. 1-2, pp. 1-305, 2008
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 9
    • 49249151236 scopus 로고
    • The complexity of computing the permanent
    • L. G. Valiant, "The complexity of computing the permanent," Theoretical Computer Science, vol. 8, no. 2, 1979
    • (1979) Theoretical Computer Science , vol.8 , Issue.2
    • Valiant, L.G.1
  • 12
    • 84937919648 scopus 로고    scopus 로고
    • Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets
    • A. Prasad, S. Jegelka, and D. Batra, "Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets," in NIPS, 2014
    • (2014) NIPS
    • Prasad, A.1    Jegelka, S.2    Batra, D.3
  • 13
    • 34547216923 scopus 로고    scopus 로고
    • Recovering surface layout from an image
    • D. Hoiem, A. A. Efros, and M. Hebert, "Recovering surface layout from an image," IJCV, vol. 75, no. 1, 2007
    • (2007) IJCV , vol.75 , Issue.1
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 14
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • May
    • B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, "LabelMe: A database and web-based tool for image annotation," IJCV, vol. 77, pp. 157-173, May 2008
    • (2008) IJCV , vol.77 , pp. 157-173
    • Russell, B.C.1    Torralba, A.2    Murphy, K.P.3    Freeman, W.T.4
  • 15
    • 10844249670 scopus 로고    scopus 로고
    • Labeling images with a computer game
    • L. von Ahn and L. Dabbish, "Labeling images with a computer game," in CHI, CHI '04, 2004
    • (2004) CHI, CHI '04
    • Von Ahn, L.1    Dabbish, L.2
  • 16
    • 85026928611 scopus 로고    scopus 로고
    • LOCUS: Learning object classes with unsupervised segmentation
    • J. Winn and N. Jojic, "LOCUS: learning object classes with unsupervised segmentation," in CVPR, 2005
    • (2005) CVPR
    • Winn, J.1    Jojic, N.2
  • 17
    • 34948875827 scopus 로고    scopus 로고
    • Unsupervised segmentation of objects using efficient learning
    • H. Arora, N. Loeff, D. Forsyth, and N. Ahuja, "Unsupervised segmentation of objects using efficient learning," in CVPR, 2007
    • (2007) CVPR
    • Arora, H.1    Loeff, N.2    Forsyth, D.3    Ahuja, N.4
  • 18
    • 84911404516 scopus 로고    scopus 로고
    • Tell me what you see and i will show you where it is
    • J. Xu, A. G. Schwing, and R. Urtasun, "Tell me what you see and I will show you where it is," in CVPR, 2014
    • (2014) CVPR
    • Xu, J.1    Schwing, A.G.2    Urtasun, R.3
  • 19
    • 85073075960 scopus 로고    scopus 로고
    • Learning hybrid models for image annotation with partially labeled data
    • X. He and R. S. Zemel, "Learning hybrid models for image annotation with partially labeled data.," in NIPS, 2008
    • (2008) NIPS
    • He, X.1    Zemel, R.S.2
  • 20
    • 58349114205 scopus 로고    scopus 로고
    • Scene segmentation with crfs learned from partially labeled images
    • J. Verbeek and W. Triggs, "Scene Segmentation with CRFs Learned from Partially Labeled Images," in NIPS, 2008
    • (2008) NIPS
    • Verbeek, J.1    Triggs, W.2
  • 21
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images
    • Y. Boykov and M.-P. Jolly, "Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images," ICCV, 2001
    • (2001) ICCV
    • Boykov, Y.1    Jolly, M.-P.2
  • 22
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut": Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake, ""GrabCut": interactive foreground extraction using iterated graph cuts," SIGGRAPH, 2004
    • (2004) SIGGRAPH
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 23
    • 84898472323 scopus 로고    scopus 로고
    • Semi-supervised clustering via learnt codeword distances
    • D. Batra, R. Sukthankar, and T. Chen, "Semi-supervised clustering via learnt codeword distances," in BMVC, 2008
    • (2008) BMVC
    • Batra, D.1    Sukthankar, R.2    Chen, T.3
  • 24
    • 77955985702 scopus 로고    scopus 로고
    • Icoseg: Interactive co-segmentation with intelligent scribble guidance
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, "iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance," in CVPR, 2010
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 26
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Machine Learning, vol. 28, no. 2-3, pp. 133-168, 1997
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 27
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Mar.
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," JMLR, vol. 2, pp. 45-66, Mar. 2002
    • (2002) JMLR , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 28
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. MacKay, "Information-based objective functions for active data selection," Neural Computation, vol. 4, no. 4, pp. 590-604, 1992
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.1
  • 29
    • 51949086514 scopus 로고    scopus 로고
    • Two-dimensional active learning for image classification
    • G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang, "Two-dimensional active learning for image classification," in CVPR, pp. 1-8, 2008
    • (2008) CVPR , pp. 1-8
    • Qi, G.-J.1    Hua, X.-S.2    Rui, Y.3    Tang, J.4    Zhang, H.-J.5
  • 30
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with Gaussian processes for object categorization
    • A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, "Active learning with Gaussian processes for object categorization," in ICCV, 2007
    • (2007) ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 31
    • 70450192673 scopus 로고    scopus 로고
    • Active learning for large multi-class problems
    • P. Jain and A. Kapoor, "Active learning for large multi-class problems," in CVPR, 2009
    • (2009) CVPR
    • Jain, P.1    Kapoor, A.2
  • 32
    • 0344551862 scopus 로고    scopus 로고
    • Automatically labeling video data using multi-class active learning
    • R. Yan, J. Yang, and A. Hauptmann, "Automatically labeling video data using multi-class active learning," in ICCV, 2003
    • (2003) ICCV
    • Yan, R.1    Yang, J.2    Hauptmann, A.3
  • 33
    • 70449605468 scopus 로고    scopus 로고
    • Towards scalable dataset construction: An active learning approach
    • B. Collins, J. Deng, K. Li, and L. Fei-Fei, "Towards scalable dataset construction: An active learning approach," in ECCV, 2008
    • (2008) ECCV
    • Collins, B.1    Deng, J.2    Li, K.3    Fei-Fei, L.4
  • 34
    • 84898437287 scopus 로고    scopus 로고
    • Combining self training and active learning for video segmentation
    • A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg, "Combining self training and active learning for video segmentation," in BMVC, 2011. http://dx. doi. org/10. 5244/C. 25. 78
    • (2011) BMVC
    • Fathi, A.1    Balcan, M.F.2    Ren, X.3    Rehg, J.M.4
  • 35
    • 84898797894 scopus 로고    scopus 로고
    • Active frame selection for label propagation in videos
    • S. Vijayanarasimhan and K. Grauman, "Active frame selection for label propagation in videos," in ECCV, 2012
    • (2012) ECCV
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 36
    • 84873165828 scopus 로고    scopus 로고
    • Efficiently scaling up crowdsourced video annotation
    • Jan.
    • C. Vondrick, D. Patterson, and D. Ramanan, "Efficiently scaling up crowdsourced video annotation," IJCV, vol. 101, pp. 184-204, Jan. 2013
    • (2013) IJCV , vol.101 , pp. 184-204
    • Vondrick, C.1    Patterson, D.2    Ramanan, D.3
  • 37
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks
    • B. Settles and M. Craven, "An analysis of active learning strategies for sequence labeling tasks," in EMNLP, 2008
    • (2008) EMNLP
    • Settles, B.1    Craven, M.2
  • 38
    • 84951933074 scopus 로고    scopus 로고
    • Reducing labeling effort for structured prediction tasks
    • A. Culotta and A. McCallum, "Reducing labeling effort for structured prediction tasks," in AAAI, 2005
    • (2005) AAAI
    • Culotta, A.1    McCallum, A.2
  • 39
    • 84898968890 scopus 로고    scopus 로고
    • Latent structured active learning
    • W. Luo, A. G. Schwing, and R. Urtasun, "Latent Structured Active Learning," in NIPS, 2013
    • (2013) NIPS
    • Luo, W.1    Schwing, A.G.2    Urtasun, R.3
  • 40
    • 78649384136 scopus 로고    scopus 로고
    • Norm-product belief propagation: Primal-dual message-passing for approximate inference
    • Dec
    • T. Hazan and A. Shashua, "Norm-product belief propagation: Primal-dual message-passing for approximate inference," Information Theory, IEEE Trans. on, vol. 56, pp. 6294-6316, Dec 2010
    • (2010) Information Theory, IEEE Trans On , vol.56 , pp. 6294-6316
    • Hazan, T.1    Shashua, A.2
  • 41
    • 84990058671 scopus 로고    scopus 로고
    • Active boundary annotation using random map perturbations
    • S. Maji, T. Hazan, and T. Jaakkola, "Active boundary annotation using random map perturbations," in AISTATS, 2014
    • (2014) AISTATS
    • Maji, S.1    Hazan, T.2    Jaakkola, T.3
  • 42
    • 84856654560 scopus 로고    scopus 로고
    • Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
    • G. Papandreou and A. L. Yuille, "Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models," in ICCV, 2011
    • (2011) ICCV
    • Papandreou, G.1    Yuille, A.L.2
  • 44
    • 70450197013 scopus 로고    scopus 로고
    • What's it going to cost you?: Predicting effort vs informativeness for multilabel image annotations
    • S. Vijayanarasimhan and K. Grauman, "What's it going to cost you?: Predicting effort vs. informativeness for multilabel image annotations," in CVPR, 2009
    • (2009) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 45
    • 77955986969 scopus 로고    scopus 로고
    • Beyond active noun tagging: Modeling contextual interactions for multi-class active learning
    • B. Siddiquie and A. Gupta, "Beyond active noun tagging: Modeling contextual interactions for multi-class active learning.," in CVPR, 2010
    • (2010) CVPR
    • Siddiquie, B.1    Gupta, A.2
  • 46
    • 84887393691 scopus 로고    scopus 로고
    • Attributes for classifier feedback
    • A. Parkash and D. Parikh, "Attributes for classifier feedback," in ECCV, 2012
    • (2012) ECCV
    • Parkash, A.1    Parikh, D.2
  • 48
    • 0006776658 scopus 로고    scopus 로고
    • An efficient algorithm for finding the m most probable configurations in probabilistic expert systems
    • D. Nilsson, "An efficient algorithm for finding the m most probable configurations in probabilistic expert systems," Statistics and Computing, vol. 8, pp. 159-173, 1998. 10. 1023/A:1008990218483
    • (1998) Statistics and Computing , vol.8 , pp. 159-173
    • Nilsson, D.1
  • 49
    • 84860606249 scopus 로고    scopus 로고
    • Finding the m most probable configurations using loopy belief propagation
    • C. Yanover and Y. Weiss, "Finding the m most probable configurations using loopy belief propagation," in NIPS, 2003
    • (2003) NIPS
    • Yanover, C.1    Weiss, Y.2
  • 50
    • 84885965403 scopus 로고    scopus 로고
    • An efficient message-passing algorithm for the m-best map problem
    • D. Batra, "An Efficient Message-Passing Algorithm for the M-Best MAP Problem," in Uncertainty in Artificial Intelli-gence, 2012
    • (2012) Uncertainty in Artificial Intelli-gence
    • Batra, D.1
  • 53
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," JMLR, vol. 6, pp. 1453-1484, 2005
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 54
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural svms
    • T. Joachims, T. Finley, and C.-N. Yu, "Cutting-plane training of structural svms," Machine Learning, vol. 77, no. 1, pp. 27-59, 2009
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 55
    • 84959215202 scopus 로고    scopus 로고
    • Divmcuts: Faster training of structural svms with diverse m-best cutting-planes
    • A. Guzman-Rivera, P. Kohli, and D. Batra, "Divmcuts: Faster training of structural svms with diverse m-best cutting-planes.," in AISTATS, 2013
    • (2013) AISTATS
    • Guzman-Rivera, A.1    Kohli, P.2    Batra, D.3
  • 56
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Ad-vances in Large Margin Classifiers, 1999
    • (1999) Ad-vances in Large Margin Classifiers
    • Platt, J.C.1
  • 57
    • 31844433358 scopus 로고    scopus 로고
    • Predicting good probabilities with supervised learning
    • A. Niculescu-Mizil and R. Caruana, "Predicting good probabilities with supervised learning," in ICML, 2005
    • (2005) ICML
    • Niculescu-Mizil, A.1    Caruana, R.2
  • 58
    • 52949120342 scopus 로고    scopus 로고
    • Measuring uncertainty in graph cut solutions
    • P. Kohli and P. H. S. Torr, "Measuring uncertainty in graph cut solutions," CVIU, vol. 112, no. 1, pp. 30-38, 2008
    • (2008) CVIU , vol.112 , Issue.1 , pp. 30-38
    • Kohli, P.1    Torr, P.H.S.2
  • 59
    • 79952317581 scopus 로고    scopus 로고
    • Margin-based active learning for structured output spaces
    • D. Roth and K. Small, "Margin-based active learning for structured output spaces," in ECML, 2006
    • (2006) ECML
    • Roth, D.1    Small, K.2
  • 60
    • 84877765715 scopus 로고    scopus 로고
    • Multiple choice learning: Learning to produce multiple structured outputs
    • A. Guzman-Rivera, D. Batra, and P. Kohli, "Multiple Choice Learning: Learning to Produce Multiple Structured Outputs," in Proc. NIPS, 2012
    • (2012) Proc NIPS
    • Guzman-Rivera, A.1    Batra, D.2    Kohli, P.3
  • 61
    • 84911443590 scopus 로고    scopus 로고
    • Efficiently enforcing diversity in multi-output structured prediction
    • A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar, "Efficiently enforcing diversity in multi-output structured prediction," in AISTATS, 2014
    • (2014) AISTATS
    • Guzman-Rivera, A.1    Kohli, P.2    Batra, D.3    Rutenbar, R.4
  • 62
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-the-art superpixel methods
    • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," PAMI, vol. 34, no. 11, 2012
    • (2012) PAMI , vol.34 , Issue.11
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Süsstrunk, S.6
  • 63
    • 0035509961 scopus 로고    scopus 로고
    • Efficient approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih, "Efficient approximate energy minimization via graph cuts," PAMI, vol. 20, no. 12, pp. 1222-1239, 2001
    • (2001) PAMI , vol.20 , Issue.12 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 64
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts
    • V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts," PAMI, vol. 26, no. 2, pp. 147-159, 2004
    • (2004) PAMI , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.