-
1
-
-
51949088643
-
Im2gps: Estimating geographic information from a single image
-
J. Hays and A. A. Efros, "im2gps: estimating geographic information from a single image," in CVPR, 2008
-
(2008)
CVPR
-
-
Hays, J.1
Efros, A.A.2
-
2
-
-
77955988502
-
The role of features, algorithms and data in visual recognition
-
D. Parikh and C. Zitnick, "The role of features, algorithms and data in visual recognition," in CVPR, 2010
-
(2010)
CVPR
-
-
Parikh, D.1
Zitnick, C.2
-
3
-
-
84898436991
-
Do we need more training data or better models for object detection
-
X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes, "Do we need more training data or better models for object detection," in BMVC, 2012
-
(2012)
BMVC
-
-
Zhu, X.1
Vondrick, C.2
Ramanan, D.3
Fowlkes, C.4
-
4
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
June
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The pascal visual object classes (voc) challenge," IJCV, vol. 88, pp. 303-338, June 2010
-
(2010)
IJCV
, vol.88
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
5
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A Large-Scale Hierarchical Image Database," in CVPR, 2009
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84937834115
-
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common objects in context," 2014
-
(2014)
Microsoft COCO: Common Objects in Context
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
8
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and variational inference," Foundations and Trends in Machine Learning, vol. 1, no. 1-2, pp. 1-305, 2008
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
9
-
-
49249151236
-
The complexity of computing the permanent
-
L. G. Valiant, "The complexity of computing the permanent," Theoretical Computer Science, vol. 8, no. 2, 1979
-
(1979)
Theoretical Computer Science
, vol.8
, Issue.2
-
-
Valiant, L.G.1
-
10
-
-
84877740634
-
Diverse M-best solutions in markov random fields
-
D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich, "Diverse M-Best Solutions in Markov Random Fields," in ECCV, 2012
-
(2012)
ECCV
-
-
Batra, D.1
Yadollahpour, P.2
Guzman-Rivera, A.3
Shakhnarovich, G.4
-
12
-
-
84937919648
-
Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets
-
A. Prasad, S. Jegelka, and D. Batra, "Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets," in NIPS, 2014
-
(2014)
NIPS
-
-
Prasad, A.1
Jegelka, S.2
Batra, D.3
-
13
-
-
34547216923
-
Recovering surface layout from an image
-
D. Hoiem, A. A. Efros, and M. Hebert, "Recovering surface layout from an image," IJCV, vol. 75, no. 1, 2007
-
(2007)
IJCV
, vol.75
, Issue.1
-
-
Hoiem, D.1
Efros, A.A.2
Hebert, M.3
-
14
-
-
39749186006
-
LabelMe: A database and web-based tool for image annotation
-
May
-
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, "LabelMe: A database and web-based tool for image annotation," IJCV, vol. 77, pp. 157-173, May 2008
-
(2008)
IJCV
, vol.77
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
15
-
-
10844249670
-
Labeling images with a computer game
-
L. von Ahn and L. Dabbish, "Labeling images with a computer game," in CHI, CHI '04, 2004
-
(2004)
CHI, CHI '04
-
-
Von Ahn, L.1
Dabbish, L.2
-
16
-
-
85026928611
-
LOCUS: Learning object classes with unsupervised segmentation
-
J. Winn and N. Jojic, "LOCUS: learning object classes with unsupervised segmentation," in CVPR, 2005
-
(2005)
CVPR
-
-
Winn, J.1
Jojic, N.2
-
17
-
-
34948875827
-
Unsupervised segmentation of objects using efficient learning
-
H. Arora, N. Loeff, D. Forsyth, and N. Ahuja, "Unsupervised segmentation of objects using efficient learning," in CVPR, 2007
-
(2007)
CVPR
-
-
Arora, H.1
Loeff, N.2
Forsyth, D.3
Ahuja, N.4
-
18
-
-
84911404516
-
Tell me what you see and i will show you where it is
-
J. Xu, A. G. Schwing, and R. Urtasun, "Tell me what you see and I will show you where it is," in CVPR, 2014
-
(2014)
CVPR
-
-
Xu, J.1
Schwing, A.G.2
Urtasun, R.3
-
19
-
-
85073075960
-
Learning hybrid models for image annotation with partially labeled data
-
X. He and R. S. Zemel, "Learning hybrid models for image annotation with partially labeled data.," in NIPS, 2008
-
(2008)
NIPS
-
-
He, X.1
Zemel, R.S.2
-
20
-
-
58349114205
-
Scene segmentation with crfs learned from partially labeled images
-
J. Verbeek and W. Triggs, "Scene Segmentation with CRFs Learned from Partially Labeled Images," in NIPS, 2008
-
(2008)
NIPS
-
-
Verbeek, J.1
Triggs, W.2
-
21
-
-
0034844730
-
Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images
-
Y. Boykov and M.-P. Jolly, "Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images," ICCV, 2001
-
(2001)
ICCV
-
-
Boykov, Y.1
Jolly, M.-P.2
-
22
-
-
84877632511
-
GrabCut": Interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake, ""GrabCut": interactive foreground extraction using iterated graph cuts," SIGGRAPH, 2004
-
(2004)
SIGGRAPH
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
23
-
-
84898472323
-
Semi-supervised clustering via learnt codeword distances
-
D. Batra, R. Sukthankar, and T. Chen, "Semi-supervised clustering via learnt codeword distances," in BMVC, 2008
-
(2008)
BMVC
-
-
Batra, D.1
Sukthankar, R.2
Chen, T.3
-
24
-
-
77955985702
-
Icoseg: Interactive co-segmentation with intelligent scribble guidance
-
D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, "iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance," in CVPR, 2010
-
(2010)
CVPR
-
-
Batra, D.1
Kowdle, A.2
Parikh, D.3
Luo, J.4
Chen, T.5
-
26
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Machine Learning, vol. 28, no. 2-3, pp. 133-168, 1997
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.2
Shamir, E.3
Tishby, N.4
-
27
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Mar.
-
S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," JMLR, vol. 2, pp. 45-66, Mar. 2002
-
(2002)
JMLR
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
28
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. MacKay, "Information-based objective functions for active data selection," Neural Computation, vol. 4, no. 4, pp. 590-604, 1992
-
(1992)
Neural Computation
, vol.4
, Issue.4
, pp. 590-604
-
-
MacKay, D.1
-
29
-
-
51949086514
-
Two-dimensional active learning for image classification
-
G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang, "Two-dimensional active learning for image classification," in CVPR, pp. 1-8, 2008
-
(2008)
CVPR
, pp. 1-8
-
-
Qi, G.-J.1
Hua, X.-S.2
Rui, Y.3
Tang, J.4
Zhang, H.-J.5
-
30
-
-
50649102302
-
Active learning with Gaussian processes for object categorization
-
A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, "Active learning with Gaussian processes for object categorization," in ICCV, 2007
-
(2007)
ICCV
-
-
Kapoor, A.1
Grauman, K.2
Urtasun, R.3
Darrell, T.4
-
31
-
-
70450192673
-
Active learning for large multi-class problems
-
P. Jain and A. Kapoor, "Active learning for large multi-class problems," in CVPR, 2009
-
(2009)
CVPR
-
-
Jain, P.1
Kapoor, A.2
-
32
-
-
0344551862
-
Automatically labeling video data using multi-class active learning
-
R. Yan, J. Yang, and A. Hauptmann, "Automatically labeling video data using multi-class active learning," in ICCV, 2003
-
(2003)
ICCV
-
-
Yan, R.1
Yang, J.2
Hauptmann, A.3
-
33
-
-
70449605468
-
Towards scalable dataset construction: An active learning approach
-
B. Collins, J. Deng, K. Li, and L. Fei-Fei, "Towards scalable dataset construction: An active learning approach," in ECCV, 2008
-
(2008)
ECCV
-
-
Collins, B.1
Deng, J.2
Li, K.3
Fei-Fei, L.4
-
34
-
-
84898437287
-
Combining self training and active learning for video segmentation
-
A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg, "Combining self training and active learning for video segmentation," in BMVC, 2011. http://dx. doi. org/10. 5244/C. 25. 78
-
(2011)
BMVC
-
-
Fathi, A.1
Balcan, M.F.2
Ren, X.3
Rehg, J.M.4
-
35
-
-
84898797894
-
Active frame selection for label propagation in videos
-
S. Vijayanarasimhan and K. Grauman, "Active frame selection for label propagation in videos," in ECCV, 2012
-
(2012)
ECCV
-
-
Vijayanarasimhan, S.1
Grauman, K.2
-
36
-
-
84873165828
-
Efficiently scaling up crowdsourced video annotation
-
Jan.
-
C. Vondrick, D. Patterson, and D. Ramanan, "Efficiently scaling up crowdsourced video annotation," IJCV, vol. 101, pp. 184-204, Jan. 2013
-
(2013)
IJCV
, vol.101
, pp. 184-204
-
-
Vondrick, C.1
Patterson, D.2
Ramanan, D.3
-
37
-
-
80053375448
-
An analysis of active learning strategies for sequence labeling tasks
-
B. Settles and M. Craven, "An analysis of active learning strategies for sequence labeling tasks," in EMNLP, 2008
-
(2008)
EMNLP
-
-
Settles, B.1
Craven, M.2
-
38
-
-
84951933074
-
Reducing labeling effort for structured prediction tasks
-
A. Culotta and A. McCallum, "Reducing labeling effort for structured prediction tasks," in AAAI, 2005
-
(2005)
AAAI
-
-
Culotta, A.1
McCallum, A.2
-
40
-
-
78649384136
-
Norm-product belief propagation: Primal-dual message-passing for approximate inference
-
Dec
-
T. Hazan and A. Shashua, "Norm-product belief propagation: Primal-dual message-passing for approximate inference," Information Theory, IEEE Trans. on, vol. 56, pp. 6294-6316, Dec 2010
-
(2010)
Information Theory, IEEE Trans On
, vol.56
, pp. 6294-6316
-
-
Hazan, T.1
Shashua, A.2
-
41
-
-
84990058671
-
Active boundary annotation using random map perturbations
-
S. Maji, T. Hazan, and T. Jaakkola, "Active boundary annotation using random map perturbations," in AISTATS, 2014
-
(2014)
AISTATS
-
-
Maji, S.1
Hazan, T.2
Jaakkola, T.3
-
42
-
-
84856654560
-
Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
-
G. Papandreou and A. L. Yuille, "Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models," in ICCV, 2011
-
(2011)
ICCV
-
-
Papandreou, G.1
Yuille, A.L.2
-
44
-
-
70450197013
-
What's it going to cost you?: Predicting effort vs informativeness for multilabel image annotations
-
S. Vijayanarasimhan and K. Grauman, "What's it going to cost you?: Predicting effort vs. informativeness for multilabel image annotations," in CVPR, 2009
-
(2009)
CVPR
-
-
Vijayanarasimhan, S.1
Grauman, K.2
-
45
-
-
77955986969
-
Beyond active noun tagging: Modeling contextual interactions for multi-class active learning
-
B. Siddiquie and A. Gupta, "Beyond active noun tagging: Modeling contextual interactions for multi-class active learning.," in CVPR, 2010
-
(2010)
CVPR
-
-
Siddiquie, B.1
Gupta, A.2
-
46
-
-
84887393691
-
Attributes for classifier feedback
-
A. Parkash and D. Parikh, "Attributes for classifier feedback," in ECCV, 2012
-
(2012)
ECCV
-
-
Parkash, A.1
Parikh, D.2
-
48
-
-
0006776658
-
An efficient algorithm for finding the m most probable configurations in probabilistic expert systems
-
D. Nilsson, "An efficient algorithm for finding the m most probable configurations in probabilistic expert systems," Statistics and Computing, vol. 8, pp. 159-173, 1998. 10. 1023/A:1008990218483
-
(1998)
Statistics and Computing
, vol.8
, pp. 159-173
-
-
Nilsson, D.1
-
49
-
-
84860606249
-
Finding the m most probable configurations using loopy belief propagation
-
C. Yanover and Y. Weiss, "Finding the m most probable configurations using loopy belief propagation," in NIPS, 2003
-
(2003)
NIPS
-
-
Yanover, C.1
Weiss, Y.2
-
50
-
-
84885965403
-
An efficient message-passing algorithm for the m-best map problem
-
D. Batra, "An Efficient Message-Passing Algorithm for the M-Best MAP Problem," in Uncertainty in Artificial Intelli-gence, 2012
-
(2012)
Uncertainty in Artificial Intelli-gence
-
-
Batra, D.1
-
51
-
-
84937835781
-
Computing the m most probable modes of a graphical model
-
C. Chen, V. Kolmogorov, Y. Zhu, D. Metaxas, and C. H. Lampert, "Computing the m most probable modes of a graphical model," in AISTATS, 2013
-
(2013)
AISTATS
-
-
Chen, C.1
Kolmogorov, V.2
Zhu, Y.3
Metaxas, D.4
Lampert, C.H.5
-
53
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," JMLR, vol. 6, pp. 1453-1484, 2005
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
54
-
-
69549111057
-
Cutting-plane training of structural svms
-
T. Joachims, T. Finley, and C.-N. Yu, "Cutting-plane training of structural svms," Machine Learning, vol. 77, no. 1, pp. 27-59, 2009
-
(2009)
Machine Learning
, vol.77
, Issue.1
, pp. 27-59
-
-
Joachims, T.1
Finley, T.2
Yu, C.-N.3
-
55
-
-
84959215202
-
Divmcuts: Faster training of structural svms with diverse m-best cutting-planes
-
A. Guzman-Rivera, P. Kohli, and D. Batra, "Divmcuts: Faster training of structural svms with diverse m-best cutting-planes.," in AISTATS, 2013
-
(2013)
AISTATS
-
-
Guzman-Rivera, A.1
Kohli, P.2
Batra, D.3
-
56
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Ad-vances in Large Margin Classifiers, 1999
-
(1999)
Ad-vances in Large Margin Classifiers
-
-
Platt, J.C.1
-
57
-
-
31844433358
-
Predicting good probabilities with supervised learning
-
A. Niculescu-Mizil and R. Caruana, "Predicting good probabilities with supervised learning," in ICML, 2005
-
(2005)
ICML
-
-
Niculescu-Mizil, A.1
Caruana, R.2
-
58
-
-
52949120342
-
Measuring uncertainty in graph cut solutions
-
P. Kohli and P. H. S. Torr, "Measuring uncertainty in graph cut solutions," CVIU, vol. 112, no. 1, pp. 30-38, 2008
-
(2008)
CVIU
, vol.112
, Issue.1
, pp. 30-38
-
-
Kohli, P.1
Torr, P.H.S.2
-
59
-
-
79952317581
-
Margin-based active learning for structured output spaces
-
D. Roth and K. Small, "Margin-based active learning for structured output spaces," in ECML, 2006
-
(2006)
ECML
-
-
Roth, D.1
Small, K.2
-
60
-
-
84877765715
-
Multiple choice learning: Learning to produce multiple structured outputs
-
A. Guzman-Rivera, D. Batra, and P. Kohli, "Multiple Choice Learning: Learning to Produce Multiple Structured Outputs," in Proc. NIPS, 2012
-
(2012)
Proc NIPS
-
-
Guzman-Rivera, A.1
Batra, D.2
Kohli, P.3
-
61
-
-
84911443590
-
Efficiently enforcing diversity in multi-output structured prediction
-
A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar, "Efficiently enforcing diversity in multi-output structured prediction," in AISTATS, 2014
-
(2014)
AISTATS
-
-
Guzman-Rivera, A.1
Kohli, P.2
Batra, D.3
Rutenbar, R.4
-
62
-
-
84866657764
-
SLIC superpixels compared to state-of-the-art superpixel methods
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," PAMI, vol. 34, no. 11, 2012
-
(2012)
PAMI
, vol.34
, Issue.11
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Süsstrunk, S.6
-
63
-
-
0035509961
-
Efficient approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih, "Efficient approximate energy minimization via graph cuts," PAMI, vol. 20, no. 12, pp. 1222-1239, 2001
-
(2001)
PAMI
, vol.20
, Issue.12
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
64
-
-
0742286180
-
What energy functions can be minimized via graph cuts
-
V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts," PAMI, vol. 26, no. 2, pp. 147-159, 2004
-
(2004)
PAMI
, vol.26
, Issue.2
, pp. 147-159
-
-
Kolmogorov, V.1
Zabih, R.2
|