-
1
-
-
78149452286
-
Technology progress in high-voltage gas-insulated substations
-
Metwally, I.A. Technology progress in high-voltage gas-insulated substations. IEEE Potentials 2010, 29, 25–32. [CrossRef]
-
(2010)
IEEE Potentials
, vol.29
, pp. 25-32
-
-
Metwally, I.A.1
-
2
-
-
84856273986
-
Ultra high-voltage gas-insulated switchgear—A technology milestone
-
Riechert, U.; Holaus, W. Ultra high-voltage gas-insulated switchgear—A technology milestone. Eur. Trans. Electr. Power 2012, 22, 60–82. [CrossRef]
-
(2012)
Eur. Trans. Electr. Power
, vol.22
, pp. 60-82
-
-
Riechert, U.1
Holaus, W.2
-
3
-
-
84898472330
-
Risk assessment on defects in GIS based on PD diagnostics
-
Schichler, U.; Koltunowicz, W.; Endo, F.; Feser, K.; Giboulet, A.; Girodet, A.; Hama, H.; Hampton, B.; Kranz, H.-G.; Lopez-Roldan, J. Risk assessment on defects in GIS based on PD diagnostics. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2165–2172. [CrossRef]
-
(2013)
IEEE Trans. Dielectr. Electr. Insul.
, vol.20
, pp. 2165-2172
-
-
Schichler, U.1
Koltunowicz, W.2
Endo, F.3
Feser, K.4
Giboulet, A.5
Girodet, A.6
Hama, H.7
Hampton, B.8
Kranz, H.-G.9
Lopez-Roldan, J.10
-
4
-
-
28744457368
-
Partial discharge diagnostics and electrical equipment insulation condition assessment
-
Stone, G.C. Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 891–904. [CrossRef]
-
(2005)
IEEE Trans. Dielectr. Electr. Insul.
, vol.12
, pp. 891-904
-
-
Stone, G.C.1
-
5
-
-
0036817485
-
Partial discharges. Their mechanism, detection and measurement
-
Bartnikas, R. Partial discharges. Their mechanism, detection and measurement. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 763–808. [CrossRef]
-
(2002)
IEEE Trans. Dielectr. Electr. Insul.
, vol.9
, pp. 763-808
-
-
Bartnikas, R.1
-
6
-
-
84946826810
-
An overview of state-of-the-art partial discharge analysis techniques for condition monitoring
-
Wu, M.; Cao, H.; Cao, J.; Nguyen, H.L. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag. 2015, 31, 22–35. [CrossRef]
-
(2015)
IEEE Electr. Insul. Mag.
, vol.31
, pp. 22-35
-
-
Wu, M.1
Cao, H.2
Cao, J.3
Nguyen, H.L.4
-
7
-
-
0032121519
-
The application of ultra-high-frequency partial discharge measurements to gas-insulated substations
-
Kurrer, R.; Feser, K. The application of ultra-high-frequency partial discharge measurements to gas-insulated substations. IEEE Trans. Power Deliv. 1998, 13, 777–782. [CrossRef]
-
(1998)
IEEE Trans. Power Deliv.
, vol.13
, pp. 777-782
-
-
Kurrer, R.1
Feser, K.2
-
9
-
-
84856880735
-
Identification of partial discharges in gas-insulated switchgear by ultra-high-frequency technique and classification by adopting multi-class support vector machines
-
Umamaheswari, R.; Sarathi, R. Identification of partial discharges in gas-insulated switchgear by ultra-high-frequency technique and classification by adopting multi-class support vector machines. Electr. Power Compon. Syst. 2011, 39, 1577–1595. [CrossRef]
-
(2011)
Electr. Power Compon. Syst.
, vol.39
, pp. 1577-1595
-
-
Umamaheswari, R.1
Sarathi, R.2
-
10
-
-
84926633562
-
An efficient PD data mining method for power transformer defect models using SOM technique
-
Darabad, V.; Vakilian, M.; Blackburn, T.; Phung, B. An efficient PD data mining method for power transformer defect models using SOM technique. Int. J. Electr. Power Energy Syst. 2015, 71, 373–382. [CrossRef]
-
(2015)
Int. J. Electr. Power Energy Syst.
, vol.71
, pp. 373-382
-
-
Darabad, V.1
Vakilian, M.2
Blackburn, T.3
Phung, B.4
-
11
-
-
84894252201
-
Application of an ensemble neural network for classifying partial discharge patterns
-
Mas’Ud, A.A.; Stewart, B.; McMeekin, S. Application of an ensemble neural network for classifying partial discharge patterns. Electr. Power Syst. Res. 2014, 110, 154–162. [CrossRef]
-
(2014)
Electr. Power Syst. Res.
, vol.110
, pp. 154-162
-
-
Mas’Ud, A.A.1
Stewart, B.2
McMeekin, S.3
-
12
-
-
78651500131
-
Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network
-
Evagorou, D.; Kyprianou, A.; Lewin, P.; Stavrou, A.; Efthymiou, V.; Metaxas, A.; Georghiou, G. Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network. IET Sci. Meas. Technol. 2010, 4, 177–192. [CrossRef]
-
(2010)
IET Sci. Meas. Technol.
, vol.4
, pp. 177-192
-
-
Evagorou, D.1
Kyprianou, A.2
Lewin, P.3
Stavrou, A.4
Efthymiou, V.5
Metaxas, A.6
Georghiou, G.7
-
13
-
-
84928156270
-
A hybrid algorithm based on s transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources
-
Wang, K.; Li, J.; Zhang, S.; Liao, R.; Wu, F.; Yang, L.; Li, J.; Grzybowski, S.; Yan, J. A hybrid algorithm based on s transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1042–1060. [CrossRef]
-
(2015)
IEEE Trans. Dielectr. Electr. Insul.
, vol.22
, pp. 1042-1060
-
-
Wang, K.1
Li, J.2
Zhang, S.3
Liao, R.4
Wu, F.5
Yang, L.6
Li, J.7
Grzybowski, S.8
Yan, J.9
-
14
-
-
84978035742
-
Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique
-
Zhu, M.-X.; Xue, J.-Y.; Zhang, J.-N.; Li, Y.; Deng, J.-B.; Mu, H.-B.; Zhang, G.-J.; Shao, X.-J.; Liu, X.-W. Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique. IET Sci. Meas. Technol. 2016, 10, 316–326. [CrossRef]
-
(2016)
IET Sci. Meas. Technol.
, vol.10
, pp. 316-326
-
-
Zhu, M.-X.1
Xue, J.-Y.2
Zhang, J.-N.3
Li, Y.4
Deng, J.-B.5
Mu, H.-B.6
Zhang, G.-J.7
Shao, X.-J.8
Liu, X.-W.9
-
15
-
-
84928105002
-
Partial discharge recognition in gas insulated switchgear based on multi-information fusion
-
Li, L.; Tang, J.; Liu, Y. Partial discharge recognition in gas insulated switchgear based on multi-information fusion. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1080–1087. [CrossRef]
-
(2015)
IEEE Trans. Dielectr. Electr. Insul.
, vol.22
, pp. 1080-1087
-
-
Li, L.1
Tang, J.2
Liu, Y.3
-
16
-
-
84943579862
-
Separation of sources in radiofrequency measurements of partial discharges using time–power ratio maps
-
Albarracín, R.; Robles, G.; Martinez-Tarifa, J.M.; Ardila-Rey, J. Separation of sources in radiofrequency measurements of partial discharges using time–power ratio maps. ISA Trans. 2015, 58, 389–397. [CrossRef] [PubMed]
-
(2015)
ISA Trans
, vol.58
, pp. 389-397
-
-
Albarracín, R.1
Robles, G.2
Martinez-Tarifa, J.M.3
Ardila-Rey, J.4
-
17
-
-
84864939224
-
Recognition of ultra high frequency partial discharge signals using multi-scale features
-
Li, J.; Jiang, T.; Harrison, R.F.; Grzybowski, S. Recognition of ultra high frequency partial discharge signals using multi-scale features. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1412–1420. [CrossRef]
-
(2012)
IEEE Trans. Dielectr. Electr. Insul.
, vol.19
, pp. 1412-1420
-
-
Li, J.1
Jiang, T.2
Harrison, R.F.3
Grzybowski, S.4
-
18
-
-
85010469727
-
UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology
-
Wang, X.; Li, X.; Rong, M.; Xie, D.; Ding, D.; Wang, Z. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology. Sensors 2017, 17, 177. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 177
-
-
Wang, X.1
Li, X.2
Rong, M.3
Xie, D.4
Ding, D.5
Wang, Z.6
-
19
-
-
84868024850
-
Application of the Hilbert-Huang transform with fractal feature enhancement on partial discharge recognition of power cable joints
-
Gu, F.-C.; Chang, H.-C.; Chen, F.-H.; Kuo, C.-C.; Hsu, C.-H. Application of the Hilbert-Huang transform with fractal feature enhancement on partial discharge recognition of power cable joints. IET Sci. Meas. Technol. 2012, 6, 440–448. [CrossRef]
-
(2012)
IET Sci. Meas. Technol.
, vol.6
, pp. 440-448
-
-
Gu, F.-C.1
Chang, H.-C.2
Chen, F.-H.3
Kuo, C.-C.4
Hsu, C.-H.5
-
20
-
-
85015437876
-
Feature extraction of GIS partial discharge signal based on S-transform and singular value decomposition
-
Dai, D.; Wang, X.; Long, J.; Tian, M.; Zhu, G.; Zhang, J. Feature extraction of GIS partial discharge signal based on S-transform and singular value decomposition. IET Sci. Meas. Technol. 2016, 11, 186–193. [CrossRef]
-
(2016)
IET Sci. Meas. Technol.
, vol.11
, pp. 186-193
-
-
Dai, D.1
Wang, X.2
Long, J.3
Tian, M.4
Zhu, G.5
Zhang, J.6
-
21
-
-
84928109599
-
Partial discharge pattern recognition via sparse representation and ANN
-
Majidi, M.; Fadali, M.S.; Etezadi-Amoli, M.; Oskuoee, M. Partial discharge pattern recognition via sparse representation and ANN. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1061–1070. [CrossRef]
-
(2015)
IEEE Trans. Dielectr. Electr. Insul.
, vol.22
, pp. 1061-1070
-
-
Majidi, M.1
Fadali, M.S.2
Etezadi-Amoli, M.3
Oskuoee, M.4
-
22
-
-
84957438471
-
Partial discharge pattern analysis using PCA and back-propagation artificial neural network for the estimation of size and position of metallic particle adhering to spacer in GIS
-
Khan, Y. Partial discharge pattern analysis using PCA and back-propagation artificial neural network for the estimation of size and position of metallic particle adhering to spacer in GIS. Electr. Eng. 2016, 98, 29–42. [CrossRef]
-
(2016)
Electr. Eng.
, vol.98
, pp. 29-42
-
-
Khan, Y.1
-
23
-
-
84989323173
-
Propogation characteristics of PD-induced UHF signal in 126 kV GIS with three-phase construction based on time–frequency analysis
-
Li, X.; Wang, X.; Yang, A.; Xie, D.; Ding, D.; Rong, M. Propogation characteristics of PD-induced UHF signal in 126 kV GIS with three-phase construction based on time–frequency analysis. IET Sci. Meas. Technol. 2016, 10, 805–812. [CrossRef]
-
(2016)
IET Sci. Meas. Technol.
, vol.10
, pp. 805-812
-
-
Li, X.1
Wang, X.2
Yang, A.3
Xie, D.4
Ding, D.5
Rong, M.6
-
24
-
-
0003731629
-
-
CNRS France: Paris, France; Rice University: Houston, TX, USA
-
Auger, F.; Flandrin, P.; Gonçalvès, P.; Lemoine, O. Time-Frequency Toolbox; CNRS France: Paris, France; Rice University: Houston, TX, USA, 1996.
-
(1996)
Time-Frequency Toolbox
-
-
Auger, F.1
Flandrin, P.2
Gonçalvès, P.3
Lemoine, O.4
-
25
-
-
84973468819
-
Improving recognition accuracy of partial discharge patterns by image-oriented feature extraction and selection technique
-
Zhang, S.; Li, C.; Wang, K.; Li, J.; Liao, R.; Zhou, T.; Zhang, Y. Improving recognition accuracy of partial discharge patterns by image-oriented feature extraction and selection technique. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1076–1087. [CrossRef]
-
(2016)
IEEE Trans. Dielectr. Electr. Insul.
, vol.23
, pp. 1076-1087
-
-
Zhang, S.1
Li, C.2
Wang, K.3
Li, J.4
Liao, R.5
Zhou, T.6
Zhang, Y.7
-
26
-
-
84878520420
-
Optimal features selected by NSGA-II for partial discharge pulses separation based on time-frequency representation and matrix decomposition
-
Wang, K.; Liao, R.; Yang, L.; Li, J.; Grzybowski, S.; Hao, J. Optimal features selected by NSGA-II for partial discharge pulses separation based on time-frequency representation and matrix decomposition. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 825–838. [CrossRef]
-
(2013)
IEEE Trans. Dielectr. Electr. Insul.
, vol.20
, pp. 825-838
-
-
Wang, K.1
Liao, R.2
Yang, L.3
Li, J.4
Grzybowski, S.5
Hao, J.6
-
27
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
-
(2015)
Nature
, vol.521
, pp. 436
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
28
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Lake Tahoe, NV, USA, 3–8 December 2012
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.
-
Proceedings of the Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
29
-
-
85007233515
-
Partial discharge patterns recognition with deep Convolutional Neural Networks
-
Xi’an, China, 25–28 September 2016
-
Li, G.; Rong, M.; Wang, X.; Li, X.; Li, Y. Partial discharge patterns recognition with deep Convolutional Neural Networks. In Proceedings of the Condition Monitoring and Diagnosis, Xi’an, China, 25–28 September 2016; pp. 324–327.
-
Proceedings of the Condition Monitoring and Diagnosis
, pp. 324-327
-
-
Li, G.1
Rong, M.2
Wang, X.3
Li, X.4
Li, Y.5
-
30
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, NV, USA, 26 June–1 July
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
31
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7–12, June 2015
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.
-
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
32
-
-
85040604274
-
Xception: Deep Learning With Depthwise Separable Convolutions
-
Honolulu, HI, USA, 21–26 July 2017
-
Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
-
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1251-1258
-
-
Chollet, F.1
-
33
-
-
85043777453
-
Aggregated residual transformations for deep neural networks
-
Honolulu, HI, USA, 21–26 July
-
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995.
-
(2017)
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5987-5995
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
-
34
-
-
84910597067
-
Learning Deep and Wide: A Spectral Method for Learning Deep Networks
-
Shao, L.; Wu, D.; Li, X. Learning Deep and Wide: A Spectral Method for Learning Deep Networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 25, 2303–2308. [CrossRef] [PubMed]
-
(2017)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, pp. 2303-2308
-
-
Shao, L.1
Wu, D.2
Li, X.3
-
35
-
-
84947089220
-
Multiscale approaches to music audio feature learning
-
Curitiba, Brazil, 4–8 November 2013
-
Dieleman, S.; Schrauwen, B. Multiscale approaches to music audio feature learning. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR-2013), Pontifícia Universidade Católica do Paraná, Curitiba, Brazil, 4–8 November 2013; pp. 116–121.
-
Proceedings of the 14Th International Society for Music Information Retrieval Conference (ISMIR-2013), Pontifícia Universidade Católica Do Paraná
, pp. 116-121
-
-
Dieleman, S.1
Schrauwen, B.2
-
37
-
-
85042372303
-
Multi-Scale multi-band densenets for audio source separation
-
New Paltz, NY, USA, 15–18 October 2017
-
Takahashi, N.; Mitsufuji, Y. Multi-Scale multi-band densenets for audio source separation. In Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 15–18 October 2017; pp. 21–25.
-
Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
, pp. 21-25
-
-
Takahashi, N.1
Mitsufuji, Y.2
-
38
-
-
84954198849
-
Multiresolution deep belief networks
-
Canary Islands, Spain, 21–23 April
-
Tang, Y.; Mohamed, A.-R. Multiresolution deep belief networks. In Proceedings of the Artificial Intelligence and Statistics, La Palma, Canary Islands, Spain, 21–23 April 2012; pp. 1203–1211.
-
(2012)
Proceedings of the Artificial Intelligence and Statistics, La Palma
, pp. 1203-1211
-
-
Tang, Y.1
Mohamed, A.-R.2
-
39
-
-
84939247735
-
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, pp. 1904-1916
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
40
-
-
84979010616
-
LSTM: A Search Space Odyssey
-
Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netwo. Learn. Syst. 2015, 28, 2222–2232. [CrossRef] [PubMed]
-
(2015)
IEEE Trans. Neural Netwo. Learn. Syst
, vol.28
, pp. 2222-2232
-
-
Greff, K.1
Srivastava, R.K.2
Koutník, J.3
Steunebrink, B.R.4
Schmidhuber, J.5
-
41
-
-
85044076232
-
Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments
-
Li, X.; Wang, X.; Xie, D.; Wang, X.; Yang, A.; Rong, M. Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments. IET Sci. Meas. Technol. 2018, 12, 169–175. [CrossRef]
-
(2018)
IET Sci. Meas. Technol.
, vol.12
, pp. 169-175
-
-
Li, X.1
Wang, X.2
Xie, D.3
Wang, X.4
Yang, A.5
Rong, M.6
-
42
-
-
79959829092
-
Recurrent neural network based language model
-
Makuhari, Chiba, Japan, 26–30 September 2010
-
Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of the INTERSPEECH 2010—11th Annual of Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26–30 September 2010; pp. 1045–1048.
-
Proceedings of the INTERSPEECH 2010—11th Annual of Conference of the International Speech Communication Association
, pp. 1045-1048
-
-
Mikolov, T.1
Karafiát, M.2
Burget, L.3
Cernocký, J.4
Khudanpur, S.5
-
43
-
-
77956031473
-
A Survey on Transfer Learning
-
Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
44
-
-
84872553130
-
Deep learning via semi-supervised embedding
-
Springer: Berlin/Heidelberg, Germany
-
Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 639–655.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 639-655
-
-
Weston, J.1
Ratle, F.2
Mobahi, H.3
Collobert, R.4
-
45
-
-
33947233031
-
Out-of-sample extensions for LLE, IsoMap, MDS, Eigenmaps, and Spectral Clustering
-
Bengio, Y.; Paiement, J.F.; Vincent, P.; Delalleau, O.; Roux, N.L.; Ouimet, M. Out-of-sample extensions for LLE, IsoMap, MDS, Eigenmaps, and Spectral Clustering. Adv. Neural Inf. Process. Syst. 2004, 16, 177–184.
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
, pp. 177-184
-
-
Bengio, Y.1
Paiement, J.F.2
Vincent, P.3
Delalleau, O.4
Roux, N.L.5
Ouimet, M.6
-
46
-
-
0036165146
-
On a Connection between Kernel PCA and Metric Multidimensional Scaling
-
Williams, C.K.I. On a Connection between Kernel PCA and Metric Multidimensional Scaling. Mach. Learn. 2002, 46, 11–19. [CrossRef]
-
(2002)
Mach. Learn.
, vol.46
, pp. 11-19
-
-
Williams, C.K.I.1
-
47
-
-
24644436425
-
Learning a Similarity Metric Discriminatively, with Application to Face Verification
-
San Diego, CA, USA, 20–25 June 2005
-
Chopra, S.; Hadsell, R.; Lecun, Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 539–546.
-
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
Lecun, Y.3
-
48
-
-
84864947648
-
Development simulation and experiment study on UHF partial discharge sensor in GIS
-
Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF partial discharge sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430. [CrossRef]
-
(2012)
IEEE Trans. Dielectr. Electr. Insul.
, vol.19
, pp. 1421-1430
-
-
Li, T.1
Rong, M.2
Zheng, C.3
Wang, X.4
-
49
-
-
77949524387
-
-
Technical Report 1341; University of Montreal: Montreal, QC, Canada
-
Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features of a Deep Network; Technical Report 1341; University of Montreal: Montreal, QC, Canada, 2009; pp. 1–13.
-
(2009)
Visualizing Higher-Layer Features of a Deep Network
, pp. 1-13
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
|