메뉴 건너뛰기




Volumn 18, Issue 10, 2018, Pages

Partial discharge recognition with a multi-resolution convolutional neural network

Author keywords

Convolutional neural network; Multi resolution analysis; Partial discharge; Ultra high frequency signals

Indexed keywords

CONVOLUTION; DEEP LEARNING; DEFECTS; ELECTRIC SWITCHGEAR; PARTIAL DISCHARGES;

EID: 85055077813     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s18103512     Document Type: Article
Times cited : (79)

References (49)
  • 1
    • 78149452286 scopus 로고    scopus 로고
    • Technology progress in high-voltage gas-insulated substations
    • Metwally, I.A. Technology progress in high-voltage gas-insulated substations. IEEE Potentials 2010, 29, 25–32. [CrossRef]
    • (2010) IEEE Potentials , vol.29 , pp. 25-32
    • Metwally, I.A.1
  • 2
    • 84856273986 scopus 로고    scopus 로고
    • Ultra high-voltage gas-insulated switchgear—A technology milestone
    • Riechert, U.; Holaus, W. Ultra high-voltage gas-insulated switchgear—A technology milestone. Eur. Trans. Electr. Power 2012, 22, 60–82. [CrossRef]
    • (2012) Eur. Trans. Electr. Power , vol.22 , pp. 60-82
    • Riechert, U.1    Holaus, W.2
  • 4
    • 28744457368 scopus 로고    scopus 로고
    • Partial discharge diagnostics and electrical equipment insulation condition assessment
    • Stone, G.C. Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 891–904. [CrossRef]
    • (2005) IEEE Trans. Dielectr. Electr. Insul. , vol.12 , pp. 891-904
    • Stone, G.C.1
  • 5
    • 0036817485 scopus 로고    scopus 로고
    • Partial discharges. Their mechanism, detection and measurement
    • Bartnikas, R. Partial discharges. Their mechanism, detection and measurement. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 763–808. [CrossRef]
    • (2002) IEEE Trans. Dielectr. Electr. Insul. , vol.9 , pp. 763-808
    • Bartnikas, R.1
  • 6
    • 84946826810 scopus 로고    scopus 로고
    • An overview of state-of-the-art partial discharge analysis techniques for condition monitoring
    • Wu, M.; Cao, H.; Cao, J.; Nguyen, H.L. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag. 2015, 31, 22–35. [CrossRef]
    • (2015) IEEE Electr. Insul. Mag. , vol.31 , pp. 22-35
    • Wu, M.1    Cao, H.2    Cao, J.3    Nguyen, H.L.4
  • 7
    • 0032121519 scopus 로고    scopus 로고
    • The application of ultra-high-frequency partial discharge measurements to gas-insulated substations
    • Kurrer, R.; Feser, K. The application of ultra-high-frequency partial discharge measurements to gas-insulated substations. IEEE Trans. Power Deliv. 1998, 13, 777–782. [CrossRef]
    • (1998) IEEE Trans. Power Deliv. , vol.13 , pp. 777-782
    • Kurrer, R.1    Feser, K.2
  • 9
    • 84856880735 scopus 로고    scopus 로고
    • Identification of partial discharges in gas-insulated switchgear by ultra-high-frequency technique and classification by adopting multi-class support vector machines
    • Umamaheswari, R.; Sarathi, R. Identification of partial discharges in gas-insulated switchgear by ultra-high-frequency technique and classification by adopting multi-class support vector machines. Electr. Power Compon. Syst. 2011, 39, 1577–1595. [CrossRef]
    • (2011) Electr. Power Compon. Syst. , vol.39 , pp. 1577-1595
    • Umamaheswari, R.1    Sarathi, R.2
  • 10
    • 84926633562 scopus 로고    scopus 로고
    • An efficient PD data mining method for power transformer defect models using SOM technique
    • Darabad, V.; Vakilian, M.; Blackburn, T.; Phung, B. An efficient PD data mining method for power transformer defect models using SOM technique. Int. J. Electr. Power Energy Syst. 2015, 71, 373–382. [CrossRef]
    • (2015) Int. J. Electr. Power Energy Syst. , vol.71 , pp. 373-382
    • Darabad, V.1    Vakilian, M.2    Blackburn, T.3    Phung, B.4
  • 11
    • 84894252201 scopus 로고    scopus 로고
    • Application of an ensemble neural network for classifying partial discharge patterns
    • Mas’Ud, A.A.; Stewart, B.; McMeekin, S. Application of an ensemble neural network for classifying partial discharge patterns. Electr. Power Syst. Res. 2014, 110, 154–162. [CrossRef]
    • (2014) Electr. Power Syst. Res. , vol.110 , pp. 154-162
    • Mas’Ud, A.A.1    Stewart, B.2    McMeekin, S.3
  • 12
    • 78651500131 scopus 로고    scopus 로고
    • Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network
    • Evagorou, D.; Kyprianou, A.; Lewin, P.; Stavrou, A.; Efthymiou, V.; Metaxas, A.; Georghiou, G. Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network. IET Sci. Meas. Technol. 2010, 4, 177–192. [CrossRef]
    • (2010) IET Sci. Meas. Technol. , vol.4 , pp. 177-192
    • Evagorou, D.1    Kyprianou, A.2    Lewin, P.3    Stavrou, A.4    Efthymiou, V.5    Metaxas, A.6    Georghiou, G.7
  • 13
    • 84928156270 scopus 로고    scopus 로고
    • A hybrid algorithm based on s transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources
    • Wang, K.; Li, J.; Zhang, S.; Liao, R.; Wu, F.; Yang, L.; Li, J.; Grzybowski, S.; Yan, J. A hybrid algorithm based on s transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1042–1060. [CrossRef]
    • (2015) IEEE Trans. Dielectr. Electr. Insul. , vol.22 , pp. 1042-1060
    • Wang, K.1    Li, J.2    Zhang, S.3    Liao, R.4    Wu, F.5    Yang, L.6    Li, J.7    Grzybowski, S.8    Yan, J.9
  • 14
    • 84978035742 scopus 로고    scopus 로고
    • Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique
    • Zhu, M.-X.; Xue, J.-Y.; Zhang, J.-N.; Li, Y.; Deng, J.-B.; Mu, H.-B.; Zhang, G.-J.; Shao, X.-J.; Liu, X.-W. Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique. IET Sci. Meas. Technol. 2016, 10, 316–326. [CrossRef]
    • (2016) IET Sci. Meas. Technol. , vol.10 , pp. 316-326
    • Zhu, M.-X.1    Xue, J.-Y.2    Zhang, J.-N.3    Li, Y.4    Deng, J.-B.5    Mu, H.-B.6    Zhang, G.-J.7    Shao, X.-J.8    Liu, X.-W.9
  • 15
    • 84928105002 scopus 로고    scopus 로고
    • Partial discharge recognition in gas insulated switchgear based on multi-information fusion
    • Li, L.; Tang, J.; Liu, Y. Partial discharge recognition in gas insulated switchgear based on multi-information fusion. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1080–1087. [CrossRef]
    • (2015) IEEE Trans. Dielectr. Electr. Insul. , vol.22 , pp. 1080-1087
    • Li, L.1    Tang, J.2    Liu, Y.3
  • 16
    • 84943579862 scopus 로고    scopus 로고
    • Separation of sources in radiofrequency measurements of partial discharges using time–power ratio maps
    • Albarracín, R.; Robles, G.; Martinez-Tarifa, J.M.; Ardila-Rey, J. Separation of sources in radiofrequency measurements of partial discharges using time–power ratio maps. ISA Trans. 2015, 58, 389–397. [CrossRef] [PubMed]
    • (2015) ISA Trans , vol.58 , pp. 389-397
    • Albarracín, R.1    Robles, G.2    Martinez-Tarifa, J.M.3    Ardila-Rey, J.4
  • 17
    • 84864939224 scopus 로고    scopus 로고
    • Recognition of ultra high frequency partial discharge signals using multi-scale features
    • Li, J.; Jiang, T.; Harrison, R.F.; Grzybowski, S. Recognition of ultra high frequency partial discharge signals using multi-scale features. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1412–1420. [CrossRef]
    • (2012) IEEE Trans. Dielectr. Electr. Insul. , vol.19 , pp. 1412-1420
    • Li, J.1    Jiang, T.2    Harrison, R.F.3    Grzybowski, S.4
  • 18
    • 85010469727 scopus 로고    scopus 로고
    • UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology
    • Wang, X.; Li, X.; Rong, M.; Xie, D.; Ding, D.; Wang, Z. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology. Sensors 2017, 17, 177. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 177
    • Wang, X.1    Li, X.2    Rong, M.3    Xie, D.4    Ding, D.5    Wang, Z.6
  • 19
    • 84868024850 scopus 로고    scopus 로고
    • Application of the Hilbert-Huang transform with fractal feature enhancement on partial discharge recognition of power cable joints
    • Gu, F.-C.; Chang, H.-C.; Chen, F.-H.; Kuo, C.-C.; Hsu, C.-H. Application of the Hilbert-Huang transform with fractal feature enhancement on partial discharge recognition of power cable joints. IET Sci. Meas. Technol. 2012, 6, 440–448. [CrossRef]
    • (2012) IET Sci. Meas. Technol. , vol.6 , pp. 440-448
    • Gu, F.-C.1    Chang, H.-C.2    Chen, F.-H.3    Kuo, C.-C.4    Hsu, C.-H.5
  • 20
    • 85015437876 scopus 로고    scopus 로고
    • Feature extraction of GIS partial discharge signal based on S-transform and singular value decomposition
    • Dai, D.; Wang, X.; Long, J.; Tian, M.; Zhu, G.; Zhang, J. Feature extraction of GIS partial discharge signal based on S-transform and singular value decomposition. IET Sci. Meas. Technol. 2016, 11, 186–193. [CrossRef]
    • (2016) IET Sci. Meas. Technol. , vol.11 , pp. 186-193
    • Dai, D.1    Wang, X.2    Long, J.3    Tian, M.4    Zhu, G.5    Zhang, J.6
  • 22
    • 84957438471 scopus 로고    scopus 로고
    • Partial discharge pattern analysis using PCA and back-propagation artificial neural network for the estimation of size and position of metallic particle adhering to spacer in GIS
    • Khan, Y. Partial discharge pattern analysis using PCA and back-propagation artificial neural network for the estimation of size and position of metallic particle adhering to spacer in GIS. Electr. Eng. 2016, 98, 29–42. [CrossRef]
    • (2016) Electr. Eng. , vol.98 , pp. 29-42
    • Khan, Y.1
  • 23
    • 84989323173 scopus 로고    scopus 로고
    • Propogation characteristics of PD-induced UHF signal in 126 kV GIS with three-phase construction based on time–frequency analysis
    • Li, X.; Wang, X.; Yang, A.; Xie, D.; Ding, D.; Rong, M. Propogation characteristics of PD-induced UHF signal in 126 kV GIS with three-phase construction based on time–frequency analysis. IET Sci. Meas. Technol. 2016, 10, 805–812. [CrossRef]
    • (2016) IET Sci. Meas. Technol. , vol.10 , pp. 805-812
    • Li, X.1    Wang, X.2    Yang, A.3    Xie, D.4    Ding, D.5    Rong, M.6
  • 25
    • 84973468819 scopus 로고    scopus 로고
    • Improving recognition accuracy of partial discharge patterns by image-oriented feature extraction and selection technique
    • Zhang, S.; Li, C.; Wang, K.; Li, J.; Liao, R.; Zhou, T.; Zhang, Y. Improving recognition accuracy of partial discharge patterns by image-oriented feature extraction and selection technique. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1076–1087. [CrossRef]
    • (2016) IEEE Trans. Dielectr. Electr. Insul. , vol.23 , pp. 1076-1087
    • Zhang, S.1    Li, C.2    Wang, K.3    Li, J.4    Liao, R.5    Zhou, T.6    Zhang, Y.7
  • 26
    • 84878520420 scopus 로고    scopus 로고
    • Optimal features selected by NSGA-II for partial discharge pulses separation based on time-frequency representation and matrix decomposition
    • Wang, K.; Liao, R.; Yang, L.; Li, J.; Grzybowski, S.; Hao, J. Optimal features selected by NSGA-II for partial discharge pulses separation based on time-frequency representation and matrix decomposition. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 825–838. [CrossRef]
    • (2013) IEEE Trans. Dielectr. Electr. Insul. , vol.20 , pp. 825-838
    • Wang, K.1    Liao, R.2    Yang, L.3    Li, J.4    Grzybowski, S.5    Hao, J.6
  • 27
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
    • (2015) Nature , vol.521 , pp. 436
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 29
    • 85007233515 scopus 로고    scopus 로고
    • Partial discharge patterns recognition with deep Convolutional Neural Networks
    • Xi’an, China, 25–28 September 2016
    • Li, G.; Rong, M.; Wang, X.; Li, X.; Li, Y. Partial discharge patterns recognition with deep Convolutional Neural Networks. In Proceedings of the Condition Monitoring and Diagnosis, Xi’an, China, 25–28 September 2016; pp. 324–327.
    • Proceedings of the Condition Monitoring and Diagnosis , pp. 324-327
    • Li, G.1    Rong, M.2    Wang, X.3    Li, X.4    Li, Y.5
  • 34
    • 84910597067 scopus 로고    scopus 로고
    • Learning Deep and Wide: A Spectral Method for Learning Deep Networks
    • Shao, L.; Wu, D.; Li, X. Learning Deep and Wide: A Spectral Method for Learning Deep Networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 25, 2303–2308. [CrossRef] [PubMed]
    • (2017) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , pp. 2303-2308
    • Shao, L.1    Wu, D.2    Li, X.3
  • 39
    • 84939247735 scopus 로고    scopus 로고
    • Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 41
    • 85044076232 scopus 로고    scopus 로고
    • Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments
    • Li, X.; Wang, X.; Xie, D.; Wang, X.; Yang, A.; Rong, M. Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments. IET Sci. Meas. Technol. 2018, 12, 169–175. [CrossRef]
    • (2018) IET Sci. Meas. Technol. , vol.12 , pp. 169-175
    • Li, X.1    Wang, X.2    Xie, D.3    Wang, X.4    Yang, A.5    Rong, M.6
  • 43
    • 77956031473 scopus 로고    scopus 로고
    • A Survey on Transfer Learning
    • Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 44
  • 46
    • 0036165146 scopus 로고    scopus 로고
    • On a Connection between Kernel PCA and Metric Multidimensional Scaling
    • Williams, C.K.I. On a Connection between Kernel PCA and Metric Multidimensional Scaling. Mach. Learn. 2002, 46, 11–19. [CrossRef]
    • (2002) Mach. Learn. , vol.46 , pp. 11-19
    • Williams, C.K.I.1
  • 48
    • 84864947648 scopus 로고    scopus 로고
    • Development simulation and experiment study on UHF partial discharge sensor in GIS
    • Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF partial discharge sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430. [CrossRef]
    • (2012) IEEE Trans. Dielectr. Electr. Insul. , vol.19 , pp. 1421-1430
    • Li, T.1    Rong, M.2    Zheng, C.3    Wang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.